Jump to content
Sturgeon's House

Boagrius

Contributing Members
  • Content Count

    7
  • Joined

  • Last visited

  • Days Won

    1

Boagrius last won the day on August 4

Boagrius had the most liked content!

About Boagrius

  • Rank
    Newbie

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. I think you will find these informative/educational (just press play and the relevant section will start): Bear in mind that this information is now ~6 years old, that the UAS arena has not remained stagnant in that time and that it continues to develop now...
  2. It's not if you take the time to do a little follow-up research. He is referring to the fact that the F22 relies entirely on its radar (APG-77) and ESM/EW suite (ALR-94) to detect & track air and surface targets. Both of these work exclusively in the RF spectrum. The Raptor also has the IR based AN/AAR-56, but this is only a missile warning system (for now). By contrast, the F35 has its radar (APG-81), ESM/EW suite (AN/ASQ-239), long range IRST + targeting pod with laser (EOTS) and spherical close-in IRST with MAWS functionality (AN/AAQ-37). Also, there is simply no comparison between the sensing/data handling capabilities of an F16 and an F35 (with its onboard processing power and fibre optic internal network). Compare their bus data rates, for example. The rough analogy would be an internal 56k dial-up system (F16) vs an onboard 5G network (F35). If you are after even more detailed technical data, you will find a lot of it is classified, but following Gripen's advice above would be a good starting point.
  3. No problem, unfortunately there is no individual source that is ideal for getting information on military aircraft. The best advice I can give you is to try to hunt down current defence professionals where possible. It is not easy but there are a variety of places out there where you can get their input (not going to advertise other forums out of respect for this one). As a rule it is wise to be extremely wary of information coming from the blogosphere - places like War Is Boring, The National Interest, The Drive etc. There are some think-tanks like RAND, CSBA and ASPI who write interesting (if not flawless) stuff from time to time. That said, even a seemingly independent organisation like POGO has a clear agenda to push. For example: POGO went after the Abrams tank just before it earned its reputation in Desert Storm They also went after the F22 Bashing the F22 again ...and again (this one did not age well) Bashing the V22 The best starting point would be to have a careful read though my last post and go from there. Good luck!
  4. Apologies in advance for the length of this post, but I decided to throw this together and I hope everyone finds it interesting/informative. If I have made any mistakes please feel free to point them out and I will be happy to correct them. At any rate, the issues with APA's "ZOCT" are severe and numerous. Here are some of the more egregious ones based on open source information: The Air Power Australia "ZOCT" is wrong about the F35’s radar. - Greater radar aperture is advantageous if all else is equal, but it is not in this case. For example, the ZOCT does not differentiate between the PESA technology in the Irbis-E on the Su35 and the AESA technology used in the F35’s APG-81. The table does not adequately account for T/R module or LPI/LPD performance, electronic attack or passive detection functionality, radar sub-modes, ECCM and so on. The ZOCT fundamentally ignores the comparative technological sophistication of each radar, with no analysis of their actual capabilities. - The ZOCT also incorrectly portrays the APG81 as having the least capable, “medium power aperture". Generally speaking, a larger radar array on an AESA allows for a greater number of track/receive (T/R) modules, which enhances the radar’s overall capability. The ZOCT table is likely linked to APA’s false claim that the APG81 only has ~1200 T/R modules. - In reality, the APG81 has over 1600 T/R modules, which is higher than their (also incorrect) figure of 1500 for the F22’s APG-77. Note that they classify the APG-77 as a “high power aperture” at only 1500 modules, so - using APA's own reasoning - the APG-81 would qualify as a "high power aperture" as well. - It is also worth noting that the updated T/R modules fitted to the Raptor’s radar in the APG-77(v)1 upgrade were GaA T/R modules derived from the F-35’s own APG-81 (and not the other way around). Objectively speaking, both radars are world leading in their own right and are generally regarded as offering similar performance overall. You can get a better sense of their dimensional similarity below: The relevance of side-looking AESA arrays is debatable for a jet with AN/AAQ-37, AN/ASQ-239 and MADL Much like thrust vectoring, the importance of side-looking AESA arrays to the F35 is debatable, and AFAIK (contrary to how the ZOCT portrays the issue), there are currently no solid plans to install them in any of the aircraft in the table aside from the Su57. It should be noted that, due to size and space constraints, these “cheek” arrays potentially force the main radar array further forward into the nose-cone, limiting its size and aperture. When dealing with LO opponents, it may well be more effective to retain a single larger and more powerful forward-facing array (to maximise detection range vs low RCS targets) while using 360 degree passive sensors and/or offboard donors (via datalink) to deal with contacts outside of the radar’s field of view. The presence or absence of side-facing radar arrays is arguably more a matter of CONOPS than an outright advantage in every case. The ZOCT is wrong about supersonic weapons delivery “Supersonic launch of internal weapons, including maximum-speed (Mach 1.6) launch of internal air to air missiles, is a feature of all F35s”. The ZOCT is wrong about the F35’s future engine growth The potential for growth in the F35’s powerplant is far from limited. As a matter of fact, research into variable bypass engine technology has made the F35 a prime candidate for early implementation. Pratt and Whitney have already proposed F135 Growth Options 1 and 2, with the latter introducing variable bypass technology that has the potential to decrease fuel burn by up to 20% and increase thrust by up to 15%. This would improve the jet's thrust to weight ratio from 1.07 at 50% fuel and a full weapons load to over 1.2. A completely new powerplant derived from technology found in the GE XA100 and/or PW XA101 variable bypass engines is another distinct possibility that is being actively explored. The ZOCT is wrong about the F35’s combat ceiling It is not less than 45,000ft as the table claims, but greater than 50,000ft. The ZOCT is wrong about the F35’s RF stealth features - The ZOCT’s description of the F35’s stealth features as “partial” is based on the disingenuous claim that its stealth shaping works best from the forward aspect, and is less effective in the beam and aft sectors. What APA neglects to acknowledge is that this is true for ALL the stealth aircraft in the table. - In reality, both the F22 and F35 are all-aspect VLO designs, optimised to defeat the shorter wavelength fire control radars that are typically used to guide anti-aircraft missiles. Their actual radar cross-section values are of course extremely classified, but those few individuals that DO know what they are have long described them as being very comparable between the two aircraft. - It is important to note that the ZOCT also completely neglects the vital importance of stealthy sensors and emissions control (EMCON) for stealth aircraft. Compared to the other aircraft in the table, the F35 has extremely sophisticated EMCON and passive sensing capabilities (LPI/LPD radar modes, MADL datalink, passive IR based MAWS, AN/ASQ-239, long range EOTS FLIR) that are not adequately accounted for. The ZOCT is wrong about the F35’s non-RF stealth features The F35’s non-RF stealth features are at least as sophisticated as those found on any of the other aircraft in the table and probably superior to most, if not all (with rough parity perhaps, to the F22). They include: - The use of divertless supersonic inlets with serpentine inlet ducts to block the line of sight to the engine’s hot interior from the forward hemisphere. - The use of fuselage air “scoops” to mix cooler outside air with the engine exhaust so as to rapidly cool it and in turn reduce the IR signature of the engine plume - The use of onboard fuel as a coolant alongside IR suppressant coatings to reduce the IR signature of the airframe itself - The use of a serrated nozzle derived from the Low Observable Axisymmetric Nozzle (LOAN) program to further reduce the signature of the engine and assist with mixing cool air with the exhaust plume. Note that this fundamental design approach has been subsequently replicated in new nozzles proposed for the J20, J31 and Su-57. None of these aircraft feature a stealthy nozzle design in their current form though. - Recessed positioning of the nozzle so that the jet’s tailfins block a direct line of sight to it in all but the aft-most sector. The ZOCT is wrong about the F35’s internal fuel. The amount of fuel the F35 carries is irrelevant on its own. Being able to fly further for longer is certainly advantageous though. Hence, the relevant stat here is range, and the range of the F35 is comparable to that of the F22 that APA endorses. Again, this will only improve with planned enhancements to the F35’s powerplant. The ZOCT is wrong about the F35’s internal hard point stations New F35s will have 6 internal hard points with the Sidekick weapons bay modification, not 4 as the ZOCT claims. The ZOCT over-represents arbitrary aerodynamic features It is true, for example, that the F35 does not feature super cruise or thrust vectoring, but neither feature is a requirement for its specified mission set. The general consensus is that the F35’s aerodynamic characteristics combine the excellent low speed controllability of the Hornet, with the excellent subsonic acceleration of the F16. Unlike either of those aircraft, however, the F35’s ability to carry all of its weapons, EW gear and sensors internally means that it maintains its aerodynamic performance at full combat loads . Current indications are that this kinematic profile is extremely capable. Due to its flawed binary design, the ZOCT gives equal weighting to features that are not "equal". For example, APA have long claimed that non-TVC teen series fighters like F16 and F/A18 variants (along with the F35) ought to be an easy meal for a late-model TVC equipped Flanker , especially in the low speed BFM domain where TVC should shine most. After years of DACT conducted with Flankers of this type, though, the advantage may not be nearly as decisive as APA would have us believe: Now compare this to the well documented effect that VLO has on a tactical aircraft’s lethality and survivability and it becomes clear that the weightings allocated to each category in the ZOCT are deeply flawed. Suffice it to say that the F35’s unique combination of features is extremely potent. The ZOCT is missing important data APA have also omitted a plethora of features that are just as (if not more) important than many of those listed in the ZOCT. For example - Multi-spectral sensors - this refers to having RF sensors PLUS infra-red, EO and laser rangefinding. This is a feature that the F35 has and the F22, for example, does not. - Spherical FLIR and missile cueing - AN/AAQ-37 provides the F35 with a permanent passive missile lock on every aircraft around it within visual range (and possibly further). This means the F35 can fire on an enemy aircraft regardless of where the F35’s nose is pointed or where the bandit is coming from. No other aircraft in the table (aside, possibly, for the J20 with its EODAS clone) has quite the same capability. - Sensor fusion - this refers to the capacity of the aircraft’s onboard computers to collect, assimilate, analyse and present data from the aircraft’s sensors to the pilot in a way that streamlines their workload and enhances their decision making. This data can also be shared via; - An LPI, jam resistant, high throughput datalink - (eg. MADL on the F35 or the older IFDL on the F22) which, when combined with sensor fusion, allows for; - Cooperative Engagement - the high quality of the F35’s sensor fused targeting data combined with the capacity of the MADL datalink allows it to share targeting information with other platforms (eg. Aegis vessels, Army/USMC MLRS units or other F35s) and subsequently use it to fire on desired targets without relying on their own onboard sensors. - Cooperative EW - eg. cooperative jamming where members of a flight of aircraft can alternate/coordinate jamming emissions to enhance jamming effects and prevent hostile assets from pinpointing the source of the jamming. - RF threat triangulation and geo-location - eg. networking the passive ESM equipment on multiple members of a flight of aircraft to passively triangulate and geolocate threat emitters like SAM sites, ISR assets and fighter aircraft. - Cooperative IRST - eg. using a passive FLIR like EOTS cooperatively in conjunction with MADL provides another method of triangulating the location and range of hostile assets/aircraft without emitting any RF signals. - Virtual arrays/cooperative, networked radar employment - eg. actively alternating and/or coordinating radar emissions from different members of a flight of aircraft to have both additive detection effects and further reduce the chance of emitter triangulation by hostiles.
  5. Actually they absolutely do, you just didn't read them properly: - My first link clearly specifies a proposed fleet of 50 Raptors and 36 (heavily) upgraded F111's precisely as I said. The RAAF dismissed the proposal primarily on the grounds that the F22 was not suited to its needs, unavailable for export and entirely unaffordable to operate. Meanwhile, the obsolete, orphan F111 fleet had long-since become a maintenance hog that could not provide enough capability to justify its existence. - APA's anti-F35 stance can be clearly traced back to their early (ridiculous) bid to directly profit from the AIR6000 program as the prime contractor. They are about as trustworthy and "independent" on this issue as an alcoholic running an AA meeting. - The quotes I posted (from actual experts) are also readily available at my second link. You can find them here if you take the time (p42 onwards). - The "ZOCT" is demonstrably ridiculous. A high-school level understanding of Science will tell you that displaying characteristics like an aircraft's kinematic, sensor and signature reduction performance in a binary table is not a valid way to present the relevant data because they are not binary variables. Furthermore, the table itself is misleading, incomplete and fundamentally not connected to a rigorous or objective assessment of aircraft capability whatsoever. Once again, real experts have pointed this out already.
  6. Oh it’s much worse than that. APA are a laughing stock in the Australian aviation community for good reason. When AIR6000 - the project to replace the RAAF legacy Hornet fleet - was first floated, APA advocated a mixed fleet of super-duper upgraded F111s and a buy of ~50 F22s. They then started a shell company called Australian Flight Test Services to submit this proposal for AIR6000 as the prime(!), with the intention of sub-contracting the work to Lockheed Martin (ha!). When their proposal was dismissed, they started trotting out bitter garbage like the flawed and arbitrary Zero-One Comparison Table (“ZOCT”) posted earlier. True to form, this table was submitted as part of their “contribution” to a Senate hearing on the F35 acquisition only to be laughed out of the room once again. From ASPI: From SRWF (RAAF Air Marshalls Eroll McCormack & Geoff Brown): From the ADF/RAAF themselves:
×
×
  • Create New...