Jump to content
Sturgeon's House
Sign in to follow this  

Competition: A modern medium AFV

Recommended Posts

Light Combat Vehicle(Tracked)  LCV(T)


At Priory General Technology, we have taken the proven and reliable FV 100 series of vehicles and have made them more suitable for the 21st century. We accomplished this by adding the latest Cummins B-Series engine that ups the horsepower from ~190 to ~350, replacing the majority of the exposed aluminum hull with layered Boron Carbide and a derivative of AMAP, we also have made the LCV(T) optimized for a varying array of electronic, weaponry, and add-on armor packages. 


The overall weight of the LCV(T) is expected to 8.5 tons. We emphasize the strategic mobility of the LCV(T) as we can transport 3 LCV(T)s in a single C-130 and they can even by lifted in by a CH-53 or equivalent. When having to fight in areas where heavy transportation is extremely limited, it is important the capability to deploy armored vehicles in sizable numbers in short order. 


The new armor for the LCV(T) is a combination of Boron Carbide and Aluminum that covers the sides, rear, and some of the belly of the vehicle and AMAP-B(medium) armor covering the frontal arch of the vehicle. The Boron Carbide/Aluminum armor provides a lighter alternative that purely aluminum while increasing the efficiency of the ballistic protection against heavy gunfire and shrapnel. The AMAP-B on the front of the vehicle is heavier than the original aluminum due to the sheer thickness of the new armor, however this armor protects the LCV(T) against most small cannon fire(<35 mm) and gives some protection against some lighter AT rocket propelled grenades. A variant of the AMAP-M(mine) covers the bottom of the crew compartment of the LCV(T) to protect against IEDs. The AMAP armor is projected to add some additional weight to our original chassis, but this is deemed minimal by our engineers due to the weight savings by the Boron Carbide armor and the increased horsepower. 


Additional armor can be placed on the vehicle including optional slat or net armor coverings that increase 360 degree protection against AT warheads, RHA steel plates to cover the frontal hull and the turret, NERA slabs, and has potential to have other varieties of armor packages. 


We have also tried to make the LCV(T) compatible with APS systems such as AMAP-ADS/SC, Iron Curtain, and Trophy. These will allow the LCV(T) to be able to fight in more high intensity environments with less casualties. 


Other hull modifications include improved driver viewing ports/hatch. Improved engine ventilation to make way for armor increase. Additional points on the hull were boxes for spare parts and tools can be held or can be used to attach floatation devices or even parachutes. And latches on the bottom of the vehicle wear V-shaped add-ons can be placed for IED rich environments. 


Our prototype turret also features modifications. First off the gun is a Cockerill 90 mm which is used around the world so ammo is common and is known to be effective against light armor. A coaxial FN 7.62 is also present. The mantlet of the vehicle has been modified to increase protection and to prevent clipping with the driver's hatch. A ballistics computer is integrated into the firing system to increase target acquisition speed and accuracy. The commander's hatch has also been improved in a similar way to the driver's and an adjustable post has been placed in order to provide the commander with firepower suited to his mission. The rear of the turret has been extended in order to store the 30-35 rounds of 90 mm. 


We plan to develop more turrets with varying arrays of weapons including light autocannons, mortars, ATGMs, AA guns + light MANPADS/SAM, 40 mm grenade(for riot control), and are even looking to develop a 105 mm gunned version of the LCV(T). 


We here at PGT have used modern armor and automotive technologies in order to improve the combat tested FV 100 series of vehicles. Our prototype LCV(T)-90 is faster(can reach speeds up to 55 mph), tougher, and hits harder than its predecessors did and has built-in room to grow to become suited for its combat role. 


Original Requirements:

  • Must be capable of protecting against small arms from all aspects, and must be capable of withstanding 20-30mm autocannon fire across the frontal arc.- CHECK
  • Must be capable of engaging and defeating existing AFV designs (not including modern MBTs) at modern combat ranges. - CHECK
  • Must be air-transportable using existing transport aircraft (preferably AC-130 or equivalent) in either a ready-to-run or partially disassembled state. - CHECK
  • Must be capable of defending against at least one strike by man-portable anti-tank weapons, including ATGMs - CHECK* 
  • Must include weaponry or equipment for engaging with dug-in infantry in urban areas - CHECK
  • Must be capable of defending against mines, roadside bombs and IEDs - CHECK*
  • Must be highly reliable, including servicing at local depots. - CHECK
  • Must cost the same or less than equivalent systems (around $4 million per unit maximum) - CHECK**
  • Must be capable of off-road travel -CHECK

Other Requirements:

  • May be capable of surviving multiple hits by heavy autocannon (40-60mm) across the frontal arc - X 
  • May be capable of engaging low-flying aircraft and helicopters - CHECK***
  • May be directly air-deployable from existing transport aircraft - CHECK
  • May be capable of surviving multiple strikes from anti-tank missiles (of all classes) from any angle - CHECK****
  • May include only COTs components - CHECK
  • May be capable of being serviced in the field. - CHECK
  • May be in the form of a family of vehicles sharing a common chassis - CHECK
  • May cost significantly less than equivalent systems (under $3 million per unit) - CHECK**
  • May be capable of extreme off-road travel, including across anti-tank ditches and the like - CHECK 

* - not guaranteed protection, but optimal protection. Vulnerable to heavier ordinance.

** - We estimate that the LCV(T)-90 is to be in the range of $2.5 million USD, however other variants and upgrade packages could increase the cost to ~4-5 million depending on the package. Advanced APS systems are costliest upgrade

*** - AA variant can engage aircraft

**** - With added slat/net, RHA, and APS systems we predict the LCV(T) can survive engagements even after being hit multiple times by AT missiles. However we cannot guarantee the success of these systems.



(OOC: poorly drawn)Artist Rendition of the LCV(T)-90




Weight: 9.25 tons 

Height: 2.11 m 

Width: 2.135 m 

Length: 5.3 m

Crew: 3

Share this post

Link to post
Share on other sites

Despite it having minimal armor, the FV101 is an interesting vehicle. I was just going to replace all the aluminum with slightly think composites to make it withstand 20 mm and call it a day without doing anything else. Too bad I wanted MODULAR capabilities. 

Share this post

Link to post
Share on other sites

SW makes it really easy to do turret rotation and gun elevation/depression:


The rear of the turret is actually clipping into the hull. I expected this, because the rear of the turret isn't really finished yet. However, you can see I have a mantlet now!




Weight is up to 23.56 tonnes.

Share this post

Link to post
Share on other sites

What program are you using for modeling?

I wouldn't advise Solidworks for noobs, since it can be a very very annoying program to work with. 


Try Spaceclaim. Made by the same dude that made the first version of Solidworks, before he allowed the French to fuck it up.

Share this post

Link to post
Share on other sites

This is now my official submission post. I'll update it as I go along. I'm gonna publish my worksheet and keep it up to date so you guys can follow along.

Neomedi Tank AKA "Baebrams" AKA OMGwell

Load 2 into C-17

Maximum figures:

Width: 5.28m

Height: 3.61m

Length: 25.96m / 2 = 12.98, / 1.1 = 11.8m

Weight (objective): 33 tonnes

Weight (do not exceed): 40 tonnes gross


MTU 871 Ka-501

1200 shp, 2,600 RPM

Length: 1.350m

Width: 1.955m

Height: 1.085m

Mass: 1.700 tonnes, 4.300 tonnes (powerpack)


Must protect against 30mm HEDP, 25mm RHA at 50deg penetration at 500m

39mm LOS thickness will be penetrated

AH-64 gun depression: -60deg

AH-64 attack angle for strafing run: -5deg

Tank needs 50mm armor plate sloped at 30 degrees from horizontal

40mm plate sloped at 6 degrees from horizontal





75mm Autocannon L/50

240 rounds/min


150 rounds carried


long-recoil operation, fully recoiling barrel


fully stabilized


coaxial .30 caliber machine gun


Turret ring: 2.150m (same as M1)

Width: 3.350m, 3.920m w/ Relikt-L ERA

Hull height: 1.240m

Hull width: 2.160m


Hull length: 7.140m


Max elevation: 25 degrees

Max depression: -12 degrees

Uses standard Bradley 21" tracks and suspension elements, 7 per side





Hull weight, bare: 11.82 tonnes 
Turret weight, bare: 6.37 tonnes
Mantlet weight, bare: 0.86 tonnes
Total armor percentage: 55%
ERA weight: Probably about 1.7-1.9 tonnes
Fender/side skirts weight: 0.49 tonnes
Gun weight: 1.144 tonnes (3.3%)
Ammunition weight: 0.810 tonnes
Fuel weight (230 US gallons): 0.696 tonnes
Powerpack weight: 4,300 kilograms (12.4%)
Track and suspension weight: 0.196 tonnes per roadwheel assembly (including torsion bars; 14 total, equals 2.744 tonnes), plus 3.560 tonnes for all track links. (18.2% for both tracks and suspension)
Total estimated weight (current): 34.7 tonnes
What a fat little baby.


Leopard 2:

Weight 2A6: 62.3 tonnes (68.7 short tons)
Length 2A6: 9.97 metres (393 inches) (gun forward)
Width 2A6: 3.75 m (148 in)
Height 2A6: 3.0 m (120 in)


Weight 22.6 metric tons
Length (With gun forward) 9.3 meters
Width 3 meters
Height 2.7 meters

ERA brick:

25 x 13 cm Kontakt-5

10.5 cm wide by 23.0 cm long by 7.0 cm thick

10.35 kg

Kontakt-5 (4S22): 251,9х131,9х13 mm 1.37 kg
I have made the turret not clip into the hull now. Consequently, weight was reduced by 0.1 tonnes.




Size, weight and TNT equivalent of Kontakt, Kontakt-5 and Relikt light



Normal Relikt is 5.8 kg per sandwich. Length and width is the same as Kontakt-5, but thickness is unknown.



Also, the bottom one is actually Relikt 'light' (4S24), made for BMP-3s and such. Relikt (4S23) for heavy vehicles is, as I said, 5.8 kg per sandwich.


4S20 = Kontakt

4S22 = Kontakt-5

4S23 = Relikt

4S24 = Relikt 'light' (I dont know the official name)



BMP-3 with a lighter variant of Relikt.



Stats and dimensions of those boxes:


550x270x285 mm, 37 kg




Protection - eq. to 600 mm of RHA.


Share this post

Link to post
Share on other sites

Check the contact length of the track and the centre-centre distance of the tracks. With centre-centre distance I mean the distance between the centres of both tracks. That's basically the width of the hull, the width of the area between the (actual) tracks and half the width of the tracks. Contact length is, well, the length of the track that contacts the ground under normal loads.


Divide contact length by centre-centre distance and tell me the number. 


The higher it is, the worse. The optimum is 1, higher than 1 means difficulty with turning, lower than 1 means instability issues. But lower than 1 will never happen anyway, and higher than 1 will happen but isn't that big of a problem until you're into the higher numbers.

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By EnsignExpendable
      Since I clearly have too much time on my hands, and Jeeps has a pretty cool tread going on, I decided that I'm going to do the same thing, but for T-34s. Here's a quick sample that I whipped up last night, I'm probably going to cover major exterior features of at least wartime T-34s and T-34-85s, then we'll see. I'll update the document in batches per organic time period rather than some arbitrary year-based cutoff. 
      Post constructive criticism and the T-34-iest pics you got
    • By Walter_Sobchak
      Today somebody sent me an email asking if I had any material showing what the bottom of the T-34 looked like.  Glancing through my books on the topic, none really show this view of the vehicle.  The guy asking is working on a series of T-34 models and wants as much detail as possible.  Anyone got something on this?
    • By Collimatrix
      Since we've got the new AFV design competition going and not everyone has solidworks, I thought I would share this information from Technology of Tanks so those who do not have CAD/CAM programs could come up with a reasonable accounting of what a tank ought to weigh:
      -Armor usually contribute between 35% and 51% of the total mass of the vehicle. The lower figure is typical for light tanks, the higher for MBTs. If the armor were reduced to the minimum necessary for structural purposes it would still be about 20% of the total mass. The highest figure on record is 57% for the armor of the IS-3.
      -The tracks contribute about 8% to 10% of the mass of the vehicle in the case of steel link tracks. On a fast track-laying combat vehicle the tracks are getting slung around over all sorts of rocks and whatnot, so they need to be tough, which means that they're heavy. Band tracks weigh 25%-50% less than steel link tracks, but band tracks can only be used on lighter vehicles. The heaviest vehicle I know of that uses band tracks is the Turkish Tulpar IFV at 32 tonnes.
      -Suspensions contribute about 8% to 10% of the total mass of the vehicle. Hydropneumatic suspensions are the lightest, but not by an enormous margin. Higher performance suspensions weigh more.
      -The power pack, that is the engine and the transmission together, account for about 12% of the vehicle's mass.
      -Guns typically contribute 3% to 7% of the total mass of the vehicle, although cramming the very largest gun possible into the very smallest tank possible can bring this up to about 10%.
      -Ammo generally weighs less than the gun. Fuel weighs about the same as ammo.
      On any fictional or notional tank design, I'll be looking to see if the weight of the components are within these bounds. If they're not there had better be a damned good explanation.
    • By Toxn
      Your company has been selected to partake in a competition to design an aircraft for the Republic of Kerbalia. The competition will be in the form of a fly-off, with entrant designs being assessed relative to each other and the current front-line multirole fighter of the Republic (specifications included in data pack attached hereto).
      Should you choose to partake in this process, initial development funds of up to 40 000 Kerbalians will be made available to you. Technological limitations being what they are, the use of speculative engine designs (SABRE et al.) will not be accepted as a means of achieving competition goals.
      The aircraft submitted must be of the multirole fighter type, with the ability to perform a variety of missions while still being able to outfight current aircraft on a 1-to-1 basis. Significant leeway will, however, provided as to the details of the design. If required, a flyable example of the current front-line aircraft will be provided for internal comparison.
      Submissions must include, at minimum:
      - A name and internal design number (a prototype designation number will be assigned)
      - A full list of specifications
      - A background and detailed description 
      - One or more images of the submission
      We wish you the best of luck with your undertakings in this regards.
      Yours Sincerely,
      Lotho Kerman
      Head Company Wrangler,
      Department of Defence,
      Republic of Kerbalia