Jump to content
Sturgeon's House
Jamby

Help me understand tank suspension

Recommended Posts

Sooooo...after doing a site-wide search and perusing Google, I'm surprised not to have found anything about tank suspension, other than a somewhat doubtful thread on the WoT forums. Would my learned colleagues of SH be able to assist me in understanding and identifying the different types of tank suspension? I think I've got leaf-spring more or less mastered, as well as both VVSS and HVSS (thanks, JGT!) but was somewhat embarrassed not to be able to differentiate between the suspension of a Type 97 Chi-Ha and an FV4201 Chieftain.

 

UPDATE: I think I understand tank suspension better now. Thanks, everyone!

Edited by Jamby
Update

Share this post


Link to post
Share on other sites

@EnsignExpendable wrote a bit about this some time ago.  Technology of Tanks does have a good summary of the matter, but it's such an expensive matter that I recommend going straight to the piracy option and getting the shitty OCR version.  Ogorkiewicz's more recent Tanks: 100 Years of Evolution has a condensed, but far less detailed commentary on the development of tanks suspension.

Here is my heavily editorialized summary of tank suspension:

Tank suspension is what gives the track some "give" while the tank is moving at speed over rough terrain.  The main purpose of tank suspension is to keep the crew from being incapacitated by the tank shaking up and down while the tank is moving off-road.  It has some minor benefits to weapon and sight stabilization, but the technology of weapon and sight stabilization is so advanced at this point that it doesn't really matter today.

The very first tanks had no suspension whatsoever; the entire run of the track was rigidly attached to the tank's hull.  This meant that there was no shock absorption whatsoever when these old tanks went over bumps, but this was basically acceptable because the first tanks were also very slow, and tended to poison their crews with carbon monoxide anyway.

In the interwar period, tank suspension tended towards systems where several road wheels share a common spring element.  In some cases, four road wheels would be attached to a common leaf spring by  series of levers and balances.  More commonly, pairs of road wheels would share a common spring as in the HVSS and VVSS suspension of the Sherman, but also the bizarro longtitudinal torsion bar design in the Ferdinand.

 

The interwar period also saw the first independent suspension systems.  In independent suspension each road wheel acts upon its own spring.  Independent suspensions give a better ride quality for the crew at high speed, but they suffer from greater pitching oscillation (nose of the tank rocking up and down) than the older-style suspension where pairs of road wheels share a common spring, especially at lower speeds.  Independent suspensions are also heavier.  Christie suspension is independent, as are the majority of torsion bar systems (the Soviets screwed around with some non-independent systems, and there was the Ferdinand).  The majority of tank designers switched from the older spring-sharing systems to the newer independent systems, as in the US T20 series of medium tanks where the M4 evolved into the M26 and lost its volute spring suspension for torsion bars.  The British went backwards and switched from the independent Christie suspension of Comet to the spring-sharing Horstmann suspension in Centurion.  This is because the British are bad at tank design, although Centurion was a decent tank once you ripped out the old engine and transmission and put an AVDS and Allison tranny in there.  The British would stay with the Horstmann suspension through Chieftain and until Challenger 1.  Again, Chieftain was generally a bad tank, and the British made the world's best tank in 1916, and have been trailing since then.

 

The majority of publications will categorize tank suspension by what springing medium the swing arms are tensioned by.  This is completely stupid and conveys almost no useful information.  It doesn't tell me anything about the comparative automotive performance of the M60 vs the Pz. 68 to know that one has the swing arms tensioned by long, twisting rods of spring steel while the other tensions the arms with a stack of frisbee-shaped discs of spring steel.  The shape of the piece of steel being bent to absorb energy from the suspension elements is literally the least useful piece of information about the suspension performance.  More useful information would be the limits of the articulation of the swing arm, spring coefficients, swing arm length, damping coefficients, and unsprung mass of the suspension components.  Also useful would be the location of the center of mass of the tank relative to each of the road wheels and swing arms and its moment of inertia about the pitch axis.  But this more specific information is hard to come by.

Share this post


Link to post
Share on other sites

Why does Horstmann suspension necessarily denote bad tank design? I think it was arguably quite suitable for the speed that tanks like the Chieftain could reasonably reach, given what I've been reading here:

https://archive.org/stream/Janes_Technology_of_Tanks_01/Janes_Technology_of_Tanks_01_djvu.txt

 

The part I'm referring to is about two thirds of the way down the document - section 13 (I figured out how to link it: http://prntscr.com/iu7i68) - and seems to suggest that the appropriate choice of suspension is largely dependent on the speed you're moving at, from leaf-spring at the lowest speeds to torsion bar at the highest.

 

Unless you were bombing along rough country at particularly high speed (even for a vehicle designed to do that to a degree), would the difference between torsion bar and Horstmann suspension really be appreciable? Are there tankers from both sides of the pond here?

 

 

 

 

 

Edited by Jamby
Adding link

Share this post


Link to post
Share on other sites

Well there's different kinds of suspension that have evolved since WW1 and they offer different tradeoffs (although some have been superseded) such as cost, simplicity/reliability, effectiveness, etc.   but I also think there may be an element of semantics to it (how people define such things, which is where the sources you use and quality of that source) probably applies.  

 

Also there's going to be more issues than just 'speed' to consider in your suspension choice.  For example on page 319 of Jane's:

 

Quote

The advantages of torsion bar suspensions are however accompanied by a number of disadvantages. Thus, while the installation of the torsion bars across the bottom of tank hulls is simple and well-protected, it also increases their height.

 


 

This is undesirable in itself and it can also significantly increase the weight of
tanks, particularly when they are heavily armoured. Damaged torsion bars are also difficult to replace when a hull is distorted by mine blast. Moreover, the fact that torsion bars store a large amount of energy in relation to their weight means that their outside is highly stressed, which makes them vulnerable to surface damage.


Their installation in the hull makes torsion bar suspensions compare unfavourably in some respects with suspensions of the Horstmann type. In the case of the latter the coil springs are outside the hull, mounted together with their associated pairs of wheels and suspension amis on a subframe so that they form a self-contained bogie which can be replaced as a unit in the event of damage. The same applies to the externally mounted suspension of the Israeli Merkava. The latter is however greatly superior to the Horstmann suspension of the British Centurions and Chieftains because the road wheels arc independently sprung, by vertical coil springs, and because they are provided by it with greater vertical travel.

 

 

It would seem tradeoffs and design (complexity, protection, weight, internal space) are drivers over 'good' or 'bad' decisions as how it is implemented (possibly getting back to the 'semantics' again?)   Speed will matter too since that affects comfort/safety/stability of the crew and vehicle vibration and such matters as Collimatrix described (the better a suspension can cancel out the bouncing/shaking of rough terrain, the faster you could in theory go.) but it's still going to be about tradeoffs in the end (including speed.)

 

Also, the suspension itself is just part of a larger system (Wheels for example, which is also discussed in Janes) which can also play a role and probably shouldn't be ignored.

 

Differences in engineering and metallurgy  (especially over time) probably affect things too.

 

Sorry if that isn't answering what you're specifically asking I'm trying to guess at it from your words and where in Janes you're alluding (unless you mean the Damping section?)

 

Edit (again after many):  Maybe this is what you're referring to from 13.4 in Jane's? 

 

https://imgur.com/a/Et56F

 

Share this post


Link to post
Share on other sites
4 hours ago, Jamby said:

Why does Horstmann suspension necessarily denote bad tank design? I think it was arguably quite suitable for the speed that tanks like the Chieftain could reasonably reach, given what I've been reading here:

https://archive.org/stream/Janes_Technology_of_Tanks_01/Janes_Technology_of_Tanks_01_djvu.txt

 

The part I'm referring to is about two thirds of the way down the document - section 13 (I'm sorry for not linking the specific screenshot, but I absolutely cannot manage to do it somehow) - and seems to suggest that the appropriate choice of suspension is largely dependent on the speed you're moving at, from leaf-spring at the lowest speeds to torsion bar at the highest.

 

Unless you were bombing along rough country at particularly high speed (even for a vehicle designed to do that to a degree), would the difference between torsion bar and Horstmann suspension really be appreciable? Are there tankers from both sides of the pond here?

 

 

 

 

 

I think its partly an in-joke (the British were about as good at tonk design in WW2 as you would expect given the amount of effort they put into it, which was none) and partly because the Brits have this weird tendency to combine good engineering with contrarian bodging in all their stuff.

 

Going back to a 1920s suspension design for all your tanks just as literally everyone else is embracing torsion bars is... very british.

Share this post


Link to post
Share on other sites
3 hours ago, Jamby said:

Why does Horstmann suspension necessarily denote bad tank design? I think it was arguably quite suitable for the speed that tanks like the Chieftain could reasonably reach, given what I've been reading here:

https://archive.org/stream/Janes_Technology_of_Tanks_01/Janes_Technology_of_Tanks_01_djvu.txt

 

The part I'm referring to is about two thirds of the way down the document - section 13 (I'm sorry for not linking the specific screenshot, but I absolutely cannot manage to do it somehow) - and seems to suggest that the appropriate choice of suspension is largely dependent on the speed you're moving at, from leaf-spring at the lowest speeds to torsion bar at the highest.

 

Unless you were bombing along rough country at particularly high speed (even for a vehicle designed to do that to a degree), would the difference between torsion bar and Horstmann suspension really be appreciable? Are there tankers from both sides of the pond here?

 

While it is true that Chieftain had such a low power to weight ratio that putting independent suspension on it wouldn't much improve its mobility, that hardly speaks well of it.  It meant that Chieftain was generally inadequate, both in terms of power to weight and suspension performance.  Centurion, Conqueror and Chieftain are literally the only tanks designed after WWII without independent roadwheel suspension.  It was a specifically British bit of backwardness.  They were behind on hydraulic torque converters in tank transmissions, behind on smoothbore guns and APFSDS ammunition, and behind on fire control systems too.  The track record of British tank design post 1945 is really not very impressive.

On top of that it was contemporaneous with the T-64, which sported a stereo rangefinder, much higher power to weight ratio, composite armor, and a comparable gun while being something like fifteen tonnes lighter than Chieftain.

The design of Chieftain isn't all bad, and there are several individually good ideas on it.  The mantletless turret is a good idea, the reclined driver is a good idea, and the ammunition stowage is probably the safest of any tank of that generation.  But overall?  It's underwhelming.

 

2 hours ago, A_Mysterious_Stranger said:

Well there's different kinds of suspension that have evolved since WW1 and they offer different tradeoffs (although some have been superseded) such as cost, simplicity/reliability, effectiveness, etc.   but I also think there may be an element of semantics to it (how people define such things, which is where the sources you use and quality of that source) probably applies.  

 

Also there's going to be more issues than just 'speed' to consider in your suspension choice.  For example on page 319 of Jane's:

 

 

It would seem tradeoffs and design (complexity, protection, weight, internal space) are drivers over 'good' or 'bad' decisions as how it is implemented (possibly getting back to the 'semantics' again?)   Speed will matter too since that affects comfort/safety/stability of the crew and vehicle vibration and such matters as Collimatrix described (the better a suspension can cancel out the bouncing/shaking of rough terrain, the faster you could in theory go.) but it's still going to be about tradeoffs in the end (including speed.)

 

Also, the suspension itself is just part of a larger system (Wheels for example, which is also discussed in Janes) which can also play a role and probably shouldn't be ignored.

 

Differences in engineering and metallurgy  (especially over time) probably affect things too.

 

Sorry if that isn't answering what you're specifically asking I'm trying to guess at it from your words and where in Janes you're alluding (unless you mean the Damping section?)

 

Edit (again after many):  Maybe this is what you're referring to from 13.4 in Jane's? 

 

https://imgur.com/a/Et56F

 



There are indeed cost issues to consider, but these days those aren't pressing.  The cost of modern tanks is driven by the fancy composite armor and fire control systems so advanced that they are practically magical.

Again, the type of suspension isn't too useful a piece of information.  The M60 and M1 Abrams both have torsion bar suspension, but the M1's suspension articulates through about double the range of motion that the M60's does, and thus has correspondingly better ride when hauling ass offroad.  Leaf spring suspensions could be used for a high-speed tank.  Indeed, the early Daimler Benz VK. 30.01 prototypes were slated to have leaf spring suspension, and they were only later changed to torsion bars because some asshole in the bureaucracy had a fetish for interleaved roadwheels and torsion bars.  Seriously, that's what the Osprey book on the matter says.

Leaf springs would weigh somewhat more than torsion bars for the same performance.  Imagine bending a leaf spring; the atoms of iron in the outer surfaces on the top and bottom of the leaf spring are being stretched apart from each other the most.  This stretching of the metallic bonds between the atoms is how a spring stores energy.  The atoms in the center of the leaf spring are being deflected apart from each other very little, they're nearly deadweight.  The atoms on the sides of the leaf spring aren't doing much either.

A torsion bar is a big cylindrical tube that gets twisted about its long axis.  Therefore, the entire surface of the cylinder minus the ends is contributing to storage of energy.  The center of the torsion bar isn't storing much work, and there has been the odd attempt here and there to use hollow torsion bars to further improve suspension efficiency.  But for the most part, normal torsion bars are satisfactory and offer a good performance to weight ratio relative to other spring types.

Now, there are all sorts of interesting considerations when it comes to servicing the stupid things.  Torsion bar suspensions have a few problems here.

BZLTede.jpg

Torsion bar suspensions are almost always slightly asymmetrical.

E7XpCjQ.png
This is simply because one bar has to sit slightly in front of the other, which means that one roadwheel will end up sitting slightly in front of the other.  That leading wheel will eat more of the shock from bumps, which in turn means that the leading torsion bar will wear out faster than the others.

Actually changing out torsion bars ranges from a pain to a giant pain if the hull is somehow warped, as noted above.  The Israelis noted that the Horstmann suspension on their Centurions was faster to swap out than the torsion bars on their M48s.  This should not be construed as a defense of Horstmann suspension in TYOOL 1973, however.  There were plenty of other suspension systems that were completely external to the hull of the tank that offered independent roadwheel suspension, like the Belleville washer suspension in the Pz 68 and the external coil spring suspension the Israelis ultimately adopted for the Merkava.

Another problem of torsion bar suspensions is that the bars themselves take up space inside the hull, and thus force the turret basket to be a little higher:

88xAInV.png

But there are ways around this; as in the AMX-30:

FKMkxku.jpg

Share this post


Link to post
Share on other sites

One thing that have always surprised me is that even on new tank designs we still see torsion bars suspensions (T-14 I'm looking at you) while hydrogas seem to be superior in every single way but cost.

 

I mean that it allow for a smoother ride, doesn't intrude into the hull (most important point from a design perspective), add some metal on the sides where there is usually none, is external so it's not too much of a pain to replace and finally allow you to play with ground clearance and hull pitch (IMO the last part is more of a nice gimmick than something really useful combat).

 

How expensive are hydrogas compared to torsion bar (but as Collimatrix said, suspensions doesn't make up for a lot of the price in a modern MBT)?

Or is there another major downside I overlooked?

 

Same could be said about Israli coil spring suspension (which seem close to hydrogas but are maybe cheaper)

Share this post


Link to post
Share on other sites

You can see in some of the pictures in the T-14 thread that the side armor under the top run of the track is ridiculously thick.  Any sort of external suspension would probably have taken up too much room there.  So that is one advantage of torsion bars.

Aside from that, hydropneumatic seems generally superior.  I'm not even sure that it's more expensive.  Some modern torsion bars are made of very fancy and expensive VIM/VAR or electroslag steels.  I suspect (but don't know for sure) that the reason the Leo 2 and Abrams have nearly double the range of motion in their suspensions is that their torsion bars are made of these low-fatigue steels.

 

I don't know why the independent external coil spring suspension wasn't more popular.  It seems like a good and logical design.  The US T49 tank destroyer prototype used it:

iSPvaWq.png

And as you can see, it also had a rear sprocket drive.  But the production M18 Hellcat went with torsion bars and a frontal drive sprocket for reasons I do not ken.

Share this post


Link to post
Share on other sites
10 minutes ago, Collimatrix said:

I don't know why the independent external coil spring suspension wasn't more popular.  It seems like a good and logical design.  The US T49 tank destroyer prototype used it:

And as you can see, it also had a rear sprocket drive.  But the production M18 Hellcat went with torsion bars and a frontal drive sprocket for reasons I do not ken.

 

My guess would be steel fatigue, the section of a coil spring being smaller than the one of a torsion bar probably meant that coil spring could endure less cycles.

But metallurgy has come a long way since WWII.

Share this post


Link to post
Share on other sites
6 hours ago, A_Mysterious_Stranger said:

(. . .)

 

Sorry if that isn't answering what you're specifically asking I'm trying to guess at it from your words and where in Janes you're alluding (unless you mean the Damping section?)

 

Edit (again after many):  Maybe this is what you're referring to from 13.4 in Jane's? 

 

https://imgur.com/a/Et56F

 

 

This is the bit I meant - I think I finally figured out how to link it:

Screenshot

Edited by Jamby
Fixing broken link

Share this post


Link to post
Share on other sites
7 hours ago, Alzoc said:

 

My guess would be steel fatigue, the section of a coil spring being smaller than the one of a torsion bar probably meant that coil spring could endure less cycles.

But metallurgy has come a long way since WWII.

 

I'm no mechanical engineer, but as I understand it coil springs are basically torsion springs that are coiled into a helix.  So torsion bars and coil springs should have similar energy density and fatigue properties.

That said, fatigue in springs is largely dependent on how smooth the surface of the spring is kept.  As I said above, it's the surface of the spring that is storing the most work, so the bonds between the atoms are at their most stretched there.  Any imperfections in the surface of the spring, like little micro-nicks or corrosion tend to spread and accelerate fatigue.

So the fact that a torsion bar is safely tucked into the hull of the tank where it is less likely to develop such imperfections may give them an edge in fatigue life.  So... score another point for torsion bars, I guess.

Share this post


Link to post
Share on other sites
48 minutes ago, Collimatrix said:

 

I'm no mechanical engineer, but as I understand it coil springs are basically torsion springs that are coiled into a helix.  So torsion bars and coil springs should have similar energy density and fatigue properties.

 

As you said, both work in flexion.

So for the same energy absorbed, the coil spring will absorb it over a smaller section (in each "floor" of the spring) but at the same time the amplitude of movement on the thread should be smaller.

 

Edit: They work in torsion my bad, I wasn't thinking (and reading) straight. :wacko:

Time to stop for today

 

Since fatigue comes from the propagation of defects in the structure of the material, which makes it stiffer and stiffer (until it fail), I think that the amplitude of the movement should have some importance.

 

On top of that there is also the problem of surface defects, and here it would make sense for springs to be more vulnerable as you said.

 

I think it's a non trivial problem and I'm not a mechanical engineer either so I haven't done this kind of calculation since school (and when I did it was in simple configurations anyway).

Share this post


Link to post
Share on other sites
55 minutes ago, EnsignExpendable said:

Foam core or air filled? Air filled tires offer a smoother ride, but are obviously easy to shoot out. Foam core tires are bulletproof, but have the downside of settling if you're parked for too long, so the first few minutes of your ride will be very bumpy.

Are they cheaper than conventional roadwheels? 

Share this post


Link to post
Share on other sites
On 3/21/2018 at 4:04 AM, Collimatrix said:

You can see in some of the pictures in the T-14 thread that the side armor under the top run of the track is ridiculously thick.  Any sort of external suspension would probably have taken up too much room there.  So that is one advantage of torsion bars.

Aside from that, hydropneumatic seems generally superior.  I'm not even sure that it's more expensive.  Some modern torsion bars are made of very fancy and expensive VIM/VAR or electroslag steels.  I suspect (but don't know for sure) that the reason the Leo 2 and Abrams have nearly double the range of motion in their suspensions is that their torsion bars are made of these low-fatigue steels.

 

I don't know why the independent external coil spring suspension wasn't more popular.  It seems like a good and logical design.  The US T49 tank destroyer prototype used it:

iSPvaWq.png

And as you can see, it also had a rear sprocket drive.  But the production M18 Hellcat went with torsion bars and a frontal drive sprocket for reasons I do not ken.

Torsion bar, likely because of the increased weight of the M18 (T70) over the T49 & T67, and front drive because of weight (re) distribution, and it allowed the engine and transmission to be easily serviced/replaced as independent units. (the engine and trans will "slide out" on tracks.).

 

 

Share this post


Link to post
Share on other sites
On 21/03/2018 at 9:52 AM, Collimatrix said:

 

While it is true that Chieftain had such a low power to weight ratio that putting independent suspension on it wouldn't much improve its mobility, that hardly speaks well of it.  It meant that Chieftain was generally inadequate, both in terms of power to weight and suspension performance.  Centurion, Conqueror and Chieftain are literally the only tanks designed after WWII without independent roadwheel suspension.  It was a specifically British bit of backwardness.  They were behind on hydraulic torque converters in tank transmissions, behind on smoothbore guns and APFSDS ammunition, and behind on fire control systems too.  The track record of British tank design post 1945 is really not very impressive.

On top of that it was contemporaneous with the T-64, which sported a stereo rangefinder, much higher power to weight ratio, composite armor, and a comparable gun while being something like fifteen tonnes lighter than Chieftain.

The design of Chieftain isn't all bad, and there are several individually good ideas on it.  The mantletless turret is a good idea, the reclined driver is a good idea, and the ammunition stowage is probably the safest of any tank of that generation.  But overall?  It's underwhelming.

 



There are indeed cost issues to consider, but these days those aren't pressing.  The cost of modern tanks is driven by the fancy composite armor and fire control systems so advanced that they are practically magical.

Again, the type of suspension isn't too useful a piece of information.  The M60 and M1 Abrams both have torsion bar suspension, but the M1's suspension articulates through about double the range of motion that the M60's does, and thus has correspondingly better ride when hauling ass offroad.  Leaf spring suspensions could be used for a high-speed tank.  Indeed, the early Daimler Benz VK. 30.01 prototypes were slated to have leaf spring suspension, and they were only later changed to torsion bars because some asshole in the bureaucracy had a fetish for interleaved roadwheels and torsion bars.  Seriously, that's what the Osprey book on the matter says.

Leaf springs would weigh somewhat more than torsion bars for the same performance.  Imagine bending a leaf spring; the atoms of iron in the outer surfaces on the top and bottom of the leaf spring are being stretched apart from each other the most.  This stretching of the metallic bonds between the atoms is how a spring stores energy.  The atoms in the center of the leaf spring are being deflected apart from each other very little, they're nearly deadweight.  The atoms on the sides of the leaf spring aren't doing much either.

A torsion bar is a big cylindrical tube that gets twisted about its long axis.  Therefore, the entire surface of the cylinder minus the ends is contributing to storage of energy.  The center of the torsion bar isn't storing much work, and there has been the odd attempt here and there to use hollow torsion bars to further improve suspension efficiency.  But for the most part, normal torsion bars are satisfactory and offer a good performance to weight ratio relative to other spring types.

Now, there are all sorts of interesting considerations when it comes to servicing the stupid things.  Torsion bar suspensions have a few problems here.

BZLTede.jpg

Torsion bar suspensions are almost always slightly asymmetrical.

E7XpCjQ.png
This is simply because one bar has to sit slightly in front of the other, which means that one roadwheel will end up sitting slightly in front of the other.  That leading wheel will eat more of the shock from bumps, which in turn means that the leading torsion bar will wear out faster than the others.

Actually changing out torsion bars ranges from a pain to a giant pain if the hull is somehow warped, as noted above.  The Israelis noted that the Horstmann suspension on their Centurions was faster to swap out than the torsion bars on their M48s.  This should not be construed as a defense of Horstmann suspension in TYOOL 1973, however.  There were plenty of other suspension systems that were completely external to the hull of the tank that offered independent roadwheel suspension, like the Belleville washer suspension in the Pz 68 and the external coil spring suspension the Israelis ultimately adopted for the Merkava.

Another problem of torsion bar suspensions is that the bars themselves take up space inside the hull, and thus force the turret basket to be a little higher:

88xAInV.png

But there are ways around this; as in the AMX-30:

FKMkxku.jpg

Off topic, but how is a mantlet-less turret better?

Share this post


Link to post
Share on other sites
23 hours ago, Toxn said:

Off topic, but how is a mantlet-less turret better?

 

For various reasons the edge of an armor array is always a weak point.  There's free edge effect, the fact that the moving elements in NERA/ERA usually don't go all the way to the edge, and the fact that their range of intersection of incoming threats is smallest at one edge.  A mantlet-less turret presents the smallest possible weakened zone in the turret frontal armor from this edge.

 

Most mantlets don't have very much armor.  Look at the picture of the Leclerc's mantlet in the Contemporary Western Tank thread if you want to see the worst example.  Even on tanks with relatively thick, and presumably well constructed mantlets like the Leo 2A5 and up, there will still be a weak point where the edges of the mantlet touch the edges of the hole for the gun.

 

There are two objections to the mantletless design.  The first is that it will make gun replacement harder.  This is only true if the gun tube can't detatch from the gun breech.  On some guns the tube can loosen from the breech and come out forward, and on some it cant.  Obviously, a mantletless turret ought to use one that can.  The second objection is that the trunnions will intrude into the armor package and create a weak point (although this is obviously true of designs with mantlets too).  The solution to that is just make the package a bit thicker on top of where the trunnions are.

Share this post


Link to post
Share on other sites
11 minutes ago, Collimatrix said:

 

For various reasons the edge of an armor array is always a weak point.  There's free edge effect, the fact that the moving elements in NERA/ERA usually don't go all the way to the edge, and the fact that their range of intersection of incoming threats is smallest at one edge.  A mantlet-less turret presents the smallest possible weakened zone in the turret frontal armor from this edge.

 

Most mantlets don't have very much armor.  Look at the picture of the Leclerc's mantlet in the Contemporary Western Tank thread if you want to see the worst example.  Even on tanks with relatively thick, and presumably well constructed mantlets like the Leo 2A5 and up, there will still be a weak point where the edges of the mantlet touch the edges of the hole for the gun.

 

There are two objections to the mantletless design.  The first is that it will make gun replacement harder.  This is only true if the gun tube can't detatch from the gun breech.  On some guns the tube can loosen from the breech and come out forward, and on some it cant.  Obviously, a mantletless turret ought to use one that can.  The second objection is that the trunnions will intrude into the armor package and create a weak point (although this is obviously true of designs with mantlets too).  The solution to that is just make the package a bit thicker on top of where the trunnions are.

Thank you!

This makes a lot of sense, but then raises the question of why big mantlets used to be a thing?

Is edge effect just a lot less of an issue than movement in a NERA array?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By Darjeeling
      Greetings  I am Darjeeling and I come from Hong Kong. Recently as Turkey launched the OB so I investigate in the TAF as I am a apoist.
       
      The following article will mainly focus on the best armoured unit of TAF. All the data are collected from internet and I need help to complete it.
       
      [Introduction on armour unit organisation]
       
      Turkish tank brigades included three tank battalions while in the mechanised brigades just 1 tank battalion. Each tank battalion consists of 41 tanks. The staff and management team consists of 2 tanks, 39 armored rest distributed to 3 tank Wrotham. Each tank company consists of 13 tanks while 1 tank company commander and platoon 4 to 3 tanks. 
       
      Since the showing the TO&E of all armoured units should be too long, the following will only present some  "Ace armoured unit".
        =====   Version 1.1 
       
      Welcome for any suggestions/addition on this issue
       
      1)M60T units
       
      M60T is a modernised M-60 which is capable with T-72s. Turkey utilizing large numbers of these tanks have been seen deploying to the southern border in the previous years. They were used during incursions into Syria and Iraq in earlier operations to combat Kurdish forces in both nations.
       
      Here are what I confirmed:
       
       
      - 5th Armoured Brigades
      (Confirmed in internet data)
       
      - 20th Armoured Brigades
      (Confirmed in internet data)
       
      - 172nd Armoured Brigades
      (Confirmed in internet data)
       
      They are believed to have equipped with M60T. As each Turkey tank battalion consists of 41 tanks, a total of 123 out of 170 should have counted. I believe there maybe one brigades unknown.
       
       
      Example in real combat:
      >M60T act as spearhead and attaching a YPG town but being ambushed. Two tanks were destroyed.
       
       
      https://m.youtube.com/watch?v=78lnBhcA_n0
       
      2) Leopard 2 units
       
       Turkey has 354 of highly capable Leopard 2 German manufactured tanks. Leopard are currently deployed in Syria in OB and the previous OB. It is most likely that these more capable MBTs are with units tasked with guarding Turkey’s border with Russia and the Caucasus, where they would have to fight against a much more capable adversary. 
       
      Here are what I  confirmed:
       
       
      - 2nd Armoured Brigade
      (Confirmed in Operation ES as casualties)
       
      - 3th Armoured Brigade
      (Confirmed in the 2016 failed coup)
       
      - 5th Armoured Brigade 
      (Confirmed in Operation OB as casualties)
       
      So it is obviously that more efforts needed to be done on Leo2. Only half of them counted.
       
      The Leo2a4 of TAF is the outdated version that it's last update is in 1992. So this explained why it performed so bad in ES. Total 10 tanks were confirmed lost in the battle and even captured by ISIS.
       
      Yet, while facing the poor equipped and trained YPG/J, only 3 Leo 2 was destroyed in OB. 2 was taken out because the engine was penetrated and taken out by Air Force (prevent captured by YPG/J). The only effort of YPG/J is penetrating a Leo 2 from flank and lead to the blow. 
       
       
      Example in real combat:
       
      >Leo 2 receive a direct hit by YPG but it was not destroyed. High survivability showed. 
       
       
      https://m.youtube.com/watch?v=YafzmkvVRiI
       
      3) M60A3 units 
       
      M60A3 is a 2nd Gen-MBT in TAF. They are mostly used as supporting fire unit to assist the infantry. Yet, the performance of M60A3 relatively bad.
       
      Here are what I confirmed:
       
       
      - 16th Mechanised Brigade 
      (Confirmed in Operation ES as casualties)
       
      - 39th Mechanised Brigade 
      (Confirmed in Operation OB as casualties)
       
       
      Example in real combat:
       
      >M60A3 being hit as no soldiers protect it in ES
       
       
      https://m.youtube.com/watch?time_continue=28&v=pg-rbEC0jXI&ebc=ANyPxKqRFXar7bNqSS5wcCJspZFJMnyoQD0qixyUheJgMdLHy5q0eQakNmCBv16NSoGjfAoNbcP4cGDbJHXTpR7eJhobZW8EPw
       
      —————
       
      PPS:This is my post about order of battle of OB about TAF
       
      https://www.reddit.com/r/syriancivilwar/comments/81nml8/keep_updateturkish_order_of_battle_of_ob_up_to/?st=JEE2UT1F&sh=d04daee9
    • By Jagdika
      All photos were taken by myself in year 2016 during my visit to Beijing. Tanks are from the Military Museum of the Chinese People's Revolution and the Tank Museum(currently closed). Enjoy.
       
      No.1: Type 94 Light armored car (Tankette) in the Tank Museum
       





       
      This is the early version of the Type 94 Tankette. It was found in a river in 1970s. It is the best preserved Type 94 Tankette in the world.
       
      No.2: Type 97 Medium Tank in the Tank Museum
       




       







      This is a late version Type 97 medium tank. It carries the old small 57mm gun turret but has the revised engine ventilation port. This tank was donated by the Soviet 7th mechanized division  before they withdrew from China in 1955.
       
      No.3: Type 97 Medium Tank Kai in the Military Museum of the Chinese People's Revolution
       

       


       
       
       
        This Type 97 Medium Tank Kai's combat serial number is 102. It belonged to the former China North-East tank regiment. It took part in the attack of Jinzhou against KMT army on 1948-9-14, and did great contribution for knocking out their bunkers and MG nests by shooting and ramming. Thus after the battle this tank was awarded with an honored name:"The Hero(功臣号)“ About the tank itself, it was assembled by the Chinese army themselves by using destroyed or damaged Chi-Ha parts after the surrender of Japan. This particular tank was built up with a normal Type 97's chassis(57mm gun version) early model, and a Type 97 Kai's Shinhoto(New turret for the 47mm gun). However there are other saying claim that this tank was modified by the Japanese. It was the first tank that roared over the Tiananmen Square during the Founding Ceremony of China on 1949-10-1.
       
       

      The same tank on 1949-10-1. China's tank army origins from old IJA tanks.
       
      No.4: Type 97 Medium Tank in the Military Museum of the Chinese People's Revolution
       

      Sorry, only one photo was taken. This Type 97 Medium Tank has a chassis from Type 97 Medium Tank Kai and a turret from a normal Type 97 Medium Tank. It was merged together by the Chinese army.
       
      No.5: Type 95 Armored Track(Train track) Vehicle in the Military Museum of the Chinese People's Revolution
       



       
      Only two samples survived. One is in China here and one is in Kubinka, Russia (Maybe now it is transfered to the Patriot Park? I don't know).
       
       
      Hope you enjoy the photos I took! No repost to other places without my permission.
    • By Jagdika
      This is an article simply to show you guys here how Waffentrager is a faker. The original article  ( https://www.weibo.com/ttarticle/p/show?id=2309404213101531682050) was written in Chinese and Japanese. For better understanding I will translate and edit the article and post it here. 
        And I must tell you why I want to reveal this shit: Long time ago I found many sayings from Waffentrager’s blog which I had never heard of, so I turned to my Japanese friend and IJA tank researcher Mr.Taki and asked him to confirm a few of them. In the end it turned out that none of Waffentrager’s article is true. I once argued with him and he not only failed to give out his reference but also deleted my replies! I’m very angry!
       
        Now let’s get started.
       
        At the very beginning I recommend all of you who opened this post to take a look at Waffentrager’s original article, that will help you understand what I’m debating.
       
        Here is the link to the original article: https://sensha-manual.blogspot.jp/2017/09/the-ho-ri-tank-destroyer.html?m=0  
       
        In China we need to use VPN(aka “ladder-梯子” or “the scientific way of browsing the Internet-科学上网” in Chinese)to open that link above so at first I post out Waffentrager’s original post in the form of screenshots in my article. I’ll skip that here.
       

       
      Fig.1: I will skip his original article.
       
        Now, I had raised my first question here: Please take a look at the screenshot:
       

       
      Fig.2: My first question
       
        In the original article, Waffentrager insisted that the Type 5 gun tank was built in July, 1944 and fully assembled in August. It was also put into trials at the same time.
       

       
      Fig.3: Waffentrager’s original article.
       
        But, is that true? Let’s have a look at the Japanese archive:
       

       
      Important Fig.4: Archive code C14011075200, Item 4
       
        Notice the part with the red, this is the research and develop plan for the Japanese Tech Research center in 1943, and had been edited in 1944. ◎砲100(Gun-100) is the project name for the 105mm gun used by Type 5 gun tank. The column under it says: “Research a tank gun with 105mm caliber and a muzzle velocity of 900m/s”. This means that the gun had just begun to be developed and from the bottom column we can know that it was PLANNED to be finished in 1945-3[完成豫定 means ”plan to be finished” and 昭20、3 means ”Shouwa 20-3”. Shouwa 20 is 1945 in Japan (you can wiki the way for Japanese to count years I’m not going to explain it here)]
        Next let’s move on to the Type 5 gun tank itself, here is the Japanese archive:
       

       
      Important Fig.5: Archive code C14011075200, Item 7
       
        “新砲戦車(甲)ホリ車” is the very very first name of Type 5 gun tank, it should be translated into:”New gun tank(A), Ho-Ri vehicle”. “ホリ” is the secret name of it. Still from the column we can easily know that Ho-Ri was also planned to be finished in 1945-3. But under that column there is another one called:”摘要(Summary or outline)”, in this it says:”砲100、第一次試作完了昭和19、8”, In English it is: “Gun-100, First experimental construction(prototype construction) finished in Shouwa 19-8(1944-8)” What does it mean? It means that in 1944-8, Only the 105mm gun used by the Type 5 gun tank was finished! If the Ho-Ri tank itself was finished why it was not in the 摘要 column? So how could an unfinished tank mounted the prototype gun? Waffentrager is talking bullshit.
      Also from Mr.Kunimoto’s book, he gave the complete schedule of the 105mm gun, here it is:
       

       
      Important Fig.6: Kunimoto’s schedule
       
        “修正機能試験” means ”Mechanical correctional test”, it took place in 1944-8, this matches the original Japanese archive(though this chart was also made from original archives). At that time the gun had just finished, not the tank.
       
        Next is this paragraph from Waffentrager’s article:
       

       
      Fig.7: Weighing 35 tons
       
        From the archive above(important Fig.5) we can learn from the second large column”研究要項(Research items)” that Ho-Ri was only PLANNED to be 35 tons, and maximum armour thickness was PLANNED to be 120mm, not was. Waffentrager is lying, he used the PLANNED data as the BUILT data. I will post out the correct data below later to see what Ho-Ri is really like when its design was finished.
       

       
      Fig.8: 全備重量-約三五屯(Combat weight-app.35t), 装甲(最厚部)-約一二〇粍(Armour, thickest part-app.120mm)
       
        At this time, some of the people might inquire me that:”Maybe the Type 5 gun tanks were really finished! You just don’t know!” Well, I will use the archives and books to tell these guys that they are totally wrong. None of the Type 5 gun tank was finished.
        Always let’s look at Waffentrager’s article first. He said that a total of 5 Ho-Ri were completed.
       

       
      Fig.9: Waffentrager said 5 Ho-Ri were completed.
       
       He also put an original Japanese archive(C13120839500) to “enhance” his “facts”.
       

       
      Fig.10: Waffentrager’s archive
       
        Everyone can see the”ホリ車,1-3-1” in the document, and someone might actually believe that 5 Ho-Ri were actually built. But they are wrong! Waffentrager is cheating you with “only a part of the original document”! Here is what the original archive really looks like:
       

       
      Important Fig.11: Archive code C13120839500, Item 7
       
        “整備計画” is “Maintenance plan” in English, again it was PLAN! The whole plan was made in 1944-12-26. I don’t actually know how Waffentrager can misunderstand this, maybe he doesn’t even know Japanese or Chinese!
       

       
      Important Fig.12: The cover of the same archive, “昭和十九年十二月二十六日” is 1944-12-26” in English.
       
      I have other archives to prove that Ho-Ri were not finished as well:
       


       
      Important Fig. 13 and 14: Mitsubishi’s tank production chart made by the American survey team after the war ends.
       
        From the chart you can only find out Type 4 and Type 5 medium tanks’ record. There is no existence of Type 5 gun tank Ho-Ri, or the”M-5 Gun Tank” in the chart’s way.
       
        Except for the archives, many books written by Japanese also mentioned that Type 5 gun tank were not finished:
       

       
      Fig.15: Kunimoto’s record.
       
        “二〇年五月完成予定の五両の終戦時の工程進捗度は、やっと五〇パーセントであり、完成車両出せずに終戦となった。” In English it’s: “When the war ended, the five Ho-Ri planned to be finished in 1945-5 had finally reached 50% completion. No completed vehicle were made when the war ended.”
       
        Here is another book written by Japanese with the help of former IJA tank designer, Tomio Hara:
       

       
      Important Fig.16: Tomio Hara’s book
       
      “完成をみるには至らなかった” Again he emphasized that the tank was not finished. Also when Ho-Ri’s design was finished its combat weight was raised to 40 tons, not the planned 35 tons. It was only powered by one “Modified BMW watercooled V12 gasoline engine”, rated 550hp/1500rpm. In Waffentrager’s article he said later a Kawasaki 1100hp engine were installed, but obviously that’s none sense. There was really existed a Kawasaki 1100hp engine but that is the two BMW V12 engine(Same engine on Type 5 gun tank or Type 5 medium tank) combined together for Japanese super-heavy tank O-I use. It will take much more room which Ho-Ri do not have.
       

       
      Fig.17: O-I’s engine compartment arrangement. There’s no such room in Ho-Ri for this engine set.
       
        And last here are the other questions I asked
       

       
      Fig.18: Other questions I asked
       
        I have already talked about the questions regarding C13120839500 and the engine. As for the gun with 1005m/s muzzle velocity, the Japanese never planned to make the 105mm gun achieve such a high velocity because they don’t have the enough tech back then. Also from the archive C14011075200(important fig.4) the 105mm gun was designed only to reach about 900m/s.
       
        So, after all these, how did Waffentrager replied? I will post out the replies from my E-mail(because he deleted my replies on his blog).
       

       
      Fig.19: Waffentrager’s first reply
       
      He kept saying that my archive is not the same as his and he is using his own documents. I didn’t believe in these shit and I replied:
       

       
      Fig.20: My reply
       
        Last sentence, the Ho-Ri III he was talking about is fake. There are only Ho-Ri I(The one resembles the Ferdinand tank destroyer) and Ho-Ri II(The another one resembles the Jagdtiger tank destroyer). He even photoshoped a picture:
       

       
      Fig.21: Waffentrager’s fake Ho-Ri III
       

       
      Fig.22: The real Ho-Ri I and the base picture of Waffentrager’s photoshoped Ho-Ri III in Tomio Hara’s book. Many same details can be seen in Waffentrager's fake Ho-Ri III
       
        The 4 variants of up-armoured Type 3 Chi-Nu medium tank is also fake, I will post his original article and the confirmed facts I got from Mr.Taki by E-mail.
       

       
      Fig.23: 4 models of up-armoured Chi-Nu by Waffentrager
       

       
      Fig.24: Mr.Taki’s reply
       
        Waffentrager used every excuses he could get to refuse giving out the references, and finally he deleted my comments. What an asshole!
       

       
      Fig.25: Our last “conversation”
       

       
      Fig.26 He deleted my comment.
       
        So, as you can see, Waffentrager is really a dick. He is cheating everybody because he think that we can’t read Japanese. Anyway I still hope he could release his reference and documents to prove me wrong. After all, I’m not here to scold or argue with somebody, but to learn new things. Also if you guys have any questions about WWII(IJA) Japanese tanks, feel free to ask me, I’m happy to help.
    • By Walter_Sobchak
      This is a must watch for all Sherman tank fans.  
       

×