Jump to content
Sturgeon's House

Recommended Posts

On 1/2/2019 at 12:42 PM, LoooSeR said:

*Snip for brevity*

 

Nice of them to leave the markings on from the mill there. Quick research shows that to be 7020 (Constellium's only defense alloy made at Issoire in T651 processing), and that's an alloy not too commonly used as armored hulling.

Share this post


Link to post
Share on other sites

Leclerc has been used as a platform to test a 140mm gun:

 

Quote

IAV 2019: Nexter tests 140 mm gun on Leclerc MBT

Nexter has fit a 140 mm gun on a Leclerc main battle tank (MBT) to gather data for the Franco-German Main Ground Combat System (MGCS) programme to replace it and the Leopard 2, Jane's learned at the International Armoured Vehicles (IAV) 2019 conference held in London on 21-24 January.

This is understood to be the first time that a 140 mm gun has been successfully integrated onto a 50-tonne MBT and conducted over 200 firings. It is expected to provide a 70% increase in firepower over a NATO standard 120 mm gun.

Nexter has resurrected past efforts to develop a 140 mm main weapon to establish which firepower solutions are best suited to meet the MGCS requirement.

https://www.janes.com/article/85934/iav-2019-nexter-tests-140-mm-gun-on-leclerc-mbt

Share this post


Link to post
Share on other sites

 

Probably the old one.

 

Spoiler

http://image.noelshack.com/fichiers/2014/06/1391976857-leclerc140combo.jpg

 

Spoiler

http://weaponews.com/images/2017/05/17/2102fbd361620b62f4d913bedd3ae3db.jpg

 

Though AFAIK while the gun was tested on it's own, integrated to a turret to test the new autoloader, it has never been tested in a complete tank.

So my guess is that the purpose of those test is to determine if a 140mm is much harder to integrate than a 130mm and if it would be interesting to makes provision for it.

They probably already have all the ballistic data needed (unless they are testing new 140mm ammo).

Share this post


Link to post
Share on other sites

https://www.monch.com/mpg/news/land/4868-nexter-trials-leclerc.html

 

Apart from the confirmation that the 140mm trials where to asses the capability to integrate a 140mm in a 50t tank, it was announced that at IDEX 2019, they'll present a Leclerc with a drone attached which main purpose would be reconnaissance and target designation.

 

Qualification of a new programmable HE round called M3M (Impact, delay, airburst) will begin shortly.

Nexter is also working on yet another APFSDS called SHARD (probable that it will never see service like it's predecessors) and apparently the Polynege guided ammunition is still on the table (which would work well with the new reconnaissance UAV)

Share this post


Link to post
Share on other sites
24 minutes ago, Zyklon said:

Weird looking baguette!

25472233495_38cd705cb6_o.jpg

 

ELC EVEN

 

There are quite a few different turret:

 

Twin 30 mm:

 

Spoiler

1elc-even30_020.jpg

 

Smoothbore 90mm:

 

Spoiler

2elc-even90_016.jpg2elc-even90_010.jpg

 

Recoiless 120 mm:

 

Spoiler

3elc-even120_03.jpg3elc-even120_10.jpg

3elc-even120_07.jpg

3elc-even120_11.jpg

 

SS-11 and/or SS-12:

 

Spoiler

4elc-even-ss11_02.jpg

4elc-even-ss11_03.jpg

 

They were the entry in competition with the AMX design for the ELC project:

 

Spoiler

amx_elc-bis_13.jpg-amx_elc_01.jpg

 

 

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By Xoon
      Colonization Of The Solar System

       
      This thread is for discussing the colonization of the solar system, mainly focusing on Mars and the Moon since they are the most relevant. 
      Main topics include transportation, industry, agriculture, economics, civil engineering,  energy production and distribution, habitation, ethics and politics. 
       
       
       
       
      First order of business, our glories tech messiah Elon Musk has set his eyes on Mars:
      Reason stated? Because being a interplanetary species beats being a single planetary species. 
       
      How does he plan to do this?
      By sending two cargo ships by 2022 to Mars for surveying and building  basic infrastructure, then two years later in 2024 sending 4 ships, two cargo ships and two crewed ships to start the colonization. First thing would be to build fuel refineries and expanding infrastructure to support more ships, then starting to mine and build industry. 
       
      This could mark a new era in human history, a second colonization era, this time without the genocides. The economic potentials are incredible, a single asteroid could easily support the entire earths gold, silver and platinum production for a decade. The moon holds a lot of valuable Helium 3, which right now is worth 12 000 dollars per kilogram! Helium is a excellent material for nuclear reactors. 
       
       
       

       
       
      Speaking about the moon, several companies have set their eyes on the moon, and for good reason.
      In my opinion,  the moon has the possibility of becoming a mayor trade hub for the solar system.  Why is this? Simply put, the earth has a few pesky things called gravity, atmosphere and environmentalists. This makes launching rockets off the moon much cheaper. The moon could even have a space elevator with current technology!  If we consider Elon Musk's plan to travel to Mars, then the Moon should be able to supply cheaper fuel and spaceship parts to space, to then be sent to Mars. The Moon is also rich in minerals that have not sunk to the core yet, and also has a huge amount of rare earth metals, which demands are rapidly increasing. Simply put, the Moon would end up as a large exporter to both the earth and potentially Mars. Importing from earth would almost always be more expensive compared to a industrialized Moon. 
       
      Now how would we go about colonizing the moon? Honestly, in concept it is quite simple.When considering locations, the South pole seems like the best candidate. This is because of it's constant sun spots, which could give 24 hour solar power to the colony and give constant sunlight to plants without huge power usage. The south pole also contain dark spots which contains large amount of frozen water, which would be used to sustain the agriculture and to make rocket fuel. It is true that the equator has the largest amounts of Helium 3 and the best location for rocket launches. However, with the lack of constant sunlight and frequent solar winds and meteor impacts, makes to unsuited for initial colonization. If the SpaceX's BFR successes, then it would be the main means of transporting materials to the moon until infrastructure is properly developed. Later a heavy lifter would replace it when transporting goods to and from the lunar surface, and specialized cargo ship for trans portion between the Moon, Earth and Mars. A space elevator would reduce prices further in the future.  Most likely, a trade station would be set up in CIS lunar space and Earth orbit which would house large fuel tanks and be able to hold the cargo from  cargo ships and heavy lifters. Sun ports would be designated depending on their amount of sunlight. Year around sunlight spots would be dedicated to solar panels and agriculture. Varying sun spots would be used for storage, landing pads and in general everything. Dark spots would be designated to mining to extract its valuable water. Power production would be inistially almost purely solar, with some back up and smoothing out generators. Later nuclear reactors would take over, but serve as a secondary backup energy source. 
       
       
      The plan:
      If we can assume the BFR is a success, then we have roughly 150 ton of payload to work with per spaceship. The first spaceship would contain a satellite to survey colonization spot. Everything would be robotic at first. Several robots capable of building a LZ for future ships,  mining of the lunar surface for making solar panels for energy production, then mining and refinement for fuel for future expeditions. The lunar colony would be based underground, room and pillar mining would be used to cheaply create room that is also shielded from radiation and surface hazards. Copying the mighty tech priest, a second ship would come with people and more equipment. With this more large scale mining and ore refinement would be started. Eventually beginning to manufacturing their own goods. Routinely BFRs would supply the colony with special equipment like electronics, special minerals and advanced equipment and food until the agricultural sector can support the colony.  The colony would start to export Helium 3 and rocket fuel, as well as spacecraft parts and scientific materials. Eventually becoming self sustaining, it would stop importing food and equipment, manufacturing it all themselves to save costs. 
       
      I am not the best in agriculture, so if some knowledge people could teach us here about closed loop farming, or some way of cultivating the lunar soil. Feel free to do so.
       
       
      Mining:
      I found a article here about the composition of the lunar soil and the use for it's main components:

      In short, the moon has large amounts of oxygen, silicon, aluminum, calcium, iron, magnesium and titanium in it's soil.
      How do we refine them? By doing this.
       
      Aluminum could be used for most kinds of wiring to requiring high conductivity to density ratio. Meaning power lines, building cables and such. Aluminum is not very suited for building structures on the surface because of the varying temperatures causing it to expand and contract. Iron or steel is better suited here. Aluminum could however be used in underground structures where temperatures are more stable.  Aluminum would also most likely end up as the main lunar rocket fuel. Yes, aluminum as rocket fuel. Just look at things like ALICE, or Aluminum-oxygen. Aluminum-oxygen would probably win out since ALICE uses water, which would be prioritized for the BFRs, since I am pretty sure they are not multi-fuel. 
       More on aluminum rocket fuel here:
      https://forum.kerbalspaceprogram.com/index.php?/topic/88130-aluminum-as-rocket-fuel/&
      http://www.projectrho.com/public_html/rocket/realdesigns2.php#umlunar
      https://blogs.nasa.gov/Rocketology/2016/04/15/weve-got-rocket-chemistry-part-1/
      https://blogs.nasa.gov/Rocketology/2016/04/21/weve-got-rocket-chemistry-part-2/
       
      Believe it or not, but calcium is actually a excellent conductor, about 12% better than copper. So why do we not use it on earth? Because it has a tendency to spontaneously combust in the atmosphere. In a vacuum however, this does not pose a problem. I does however need to be coated in a material so it does not deteriorate. This makes it suited for "outdoor" products and compact electrical systems like electric motors. Yes, a calcium electric motor.  
       
       
      Lastly, a few articles about colonizing the moon:
      https://en.wikipedia.org/wiki/Colonization_of_the_Moon
      https://www.sciencealert.com/nasa-scientists-say-we-could-colonise-the-moon-by-2022-for-just-10-billion
      https://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/HEP_Lunar.html
       
      NASA article about production of solar panels on the moon:
      https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050110155.pdf
       
      Map over the south pole:
      http://lroc.sese.asu.edu/images/gigapan
       
       
      Feel free to spam the thread with news regarding colonization. 
       
       
    • By LostCosmonaut
      For those of you who are not familiar with him, Robert Zubrin is an American aerospace engineer and author of some note. He is probably best known for his advocacy of the 'Mars Direct' proposal, although he's also done quite a bit of work in the nuclear spacecraft propulsion field (he's the guy that came up with the NSWR). His wiki page says he's also written on other vaguely political topics, but I'm not familiar with them.
       
       
      Personally, I find his work on spacecraft propulsion highly interesting, and it's good that we've got somebody putting forth cogent ideas for space exploration. However, I feel that some of his ideas are a bit too optimistic, especially in regards to his Mars Direct approach. I feel that it would be more optimal to gain more experience with long term off-planet living in a location such as the moon before proceeding to Mars, while also using that time to mature techniques such as nuclear rockets to actually get to Mars. On a related note, I showed his NSWR paper to a guy I know who has some not insignificant knowledge of nuclear physics, and he was a bit skeptical. Still, in my opinion, it's infinitely better to have somebody be a bit overoptimistic about how well their ideas will work, and keeps push them forward, then a bunch of limp wristed pessimists who are afraid to send anyone beyond LEO because it might cost a few million dollars.
×
×
  • Create New...