Jump to content
Sturgeon's House
Sign in to follow this  

Estimating the Performance of Tank Guns

Recommended Posts

Let's say you're developing a tank with a unique (AKA non-historical) gun for one of our competitions here on SH. It would be nice to have an idea of the size of the gun, its shells, and what their performance both in terms of shell weight and velocity but also penetration, wouldn't it? Well, fortunately there is a way to do this with reasonably accurate results using your solid modeling software and some free to use browser tools.

First, you want to have a general idea of the size and performance of your gun. For this example, I decided I wanted an optimized, high velocity 85mm caliber gun with a case about as big as the 7.5cm KwK 42 (as it happened, I ended up with a case that had significantly greater volume, but that fact is unimportant for this example). The cartridge I decided on has a 130mm wide rim and a 640mm long case, of course in 85mm caliber. My first step was to model this case in SolidWorks:



You will also need to model your projectile, in this case a tungsten-carbide cored APCR round:



Next, we need a bit of freeware: A Powley computer. Originally developed by DuPont engineers for small arms ammunition, the Powley computer is an accurate enough tool to use for much larger tank rounds as well! When you click the link, you'll be greeted with this screen:




You'll note the dimensions are in inches and this thing called "grains" (abbreviated "gn"). The grain is an archaic Imperial mass unit equal to 1/7000th of a pound which is still used in the small arms field, today. Another quirk of small arms has the case capacity - a volume measurement - listed in grains as well. This is in fact grains of water (gn H2O), or the weight of water that will fill the case to the top. To find this, simply multiply the volume in cubic centimeters by 15.43 - which is also the exchange rate between the metric gram and grains mass.


Finding the volume of the case is easy with a solid modeling program; simply model the interior as a solid and find the volume of that solid:



Filling in my Powley inputs gives me this:




Note that I typically use the diameter of the projectile across the driving bands for "Bullet Diameter", but it really makes very little difference.


So far, though, we haven't actually produced any results. That's because our gun is well outside the bounds of DuPont production IMR powders, hence the output "Much slower than (IMR) 4831" in the lower left. So, we need to override the computer by checking the box next to the blue "Pressure" function, and typing in a pressure value in CUP that is reflective of tank guns of whatever era we are trying to represent. My tank gun is trying to represent something from about the late 1940s/early 1950s, so I'm going to use 45500 CUP EDIT: USE 41000 CUP for APCBC and 42800 CUP FOR APCR (or better yet, do your own calibration!):




This gives me an estimated muzzle velocity of 3,964 ft/s for my L/50 barrel. Not bad! Note the outputs on the left, which tell you a bunch of fun facts about your round but aren't terribly relevant to what we're doing here today. Next, we need to put this gun's performance in terms of penetration. The way I like to do this is through comparative analysis.


The first thing we need is to know to find penetration the ballistic performance of our round. We can estimate this using JBM's ballistic calculator and a few rules of thumb. When opening the calculator, the first thing you'll see is this:




We care about basically none of these settings except BC, velocity, and maximum range. Caliber, projectile weight, chronograph distance, etc are all pretty irrelevant to us. Keep the environmental settings (temperature, pressure, etc.) set to their defaults. First, change the ballistic coefficient type from G1 to G7 using the dropdown menu. Then, change the muzzle velocity from 3000 to whatever the muzzle velocity was that was calculated by the Powley computer. Finally, set the maximum range to your desired distance - in my case 2,000 yards.

For my round, I now have inputs that look like this:



We also need to get some idea of how fast our projectile loses velocity, something we can't know for certain without actually building a real gun and test firing it - or at least without some really sophisticated simulations. However, projectiles with the same shape tend to fly the same way, and that's something we can exploit here. To figure this out, we need a graph showing us the performance of a real-life gun. Fortunately, there is a handy one for an IRL gun similar to what I'm designing, the 90mm M3 from World War II, and its M304 HVAP-T, which is broadly similar in construction and shape to my 85mm APCR projectile:




Based on this chart, we see that the M304 should drop from its 3,350 ft/s muzzle velocity to about 2,500 ft/s at 2,000 yards. Doing a little trial and error with JBM tells me that this means the M304 has a G7 ballistic coefficient of about 1.13.


Now, our projectile will not have the same ballistic coefficient, due to it being a different size and mass. But, we can figure out what its ballistic coefficient would be by finding its sectional density and comparing that to the sectional density of M304. To find sectional density, take the projectile's weight in grains and divide it by the square of the projectile's diameter in inches, times 7000. So for M304, we get:





And for my 85mm, we get:





This means that the ballistic coefficient for an identical-shape projectile with our size and weight will be about 1.019/1.330 - or 76.6% as much - as that of the 90mm M304. That means a BC of 0.866 G7 should be approximately correct for my 85mm APCR round. Let's plug that in:



And then scroll down to the bottom to click "calculate", which gives us a big ol' chart that goes out to 2,000 yards:




O-Kay! Now we have some data. It looks like at 2,000 yards, my projectile holds about 2,800 ft/s striking velocity. It's important to note here that what we really care about isn't the striking velocity of the projectile per se, but the velocity and energy of the projectile's core. The core is what's actually doing a lot of work to the armor, so for now let's stop thinking in terms of the whole projectile, and take a look at these two cores, that of the M304 90mm HVAP, and that of my 85mm APCR round. The core of the 90mm M304 is an approximately 8 pound lump of tungsten-carbide that is about 45mm in width. My penetrator is also 8 pounds, but it's longer and thinner in proportion - just 40mm wide, rather than 45mm. This means my penetrator will penetrate more armor at a given striking velocity, and we can estimate how much more by taking the specific energy of the rounds and comparing them. That is, the energy in Joules of the penetrator alone, divided by the penetrator's diameter squared:





So the specific energy at 2,000 yards is about 826J/mm^2. Now, we need to find out at what impact velocity the M304 penetrator produces this same specific energy. Do do that, we go backwards, using the figures for M304:






Therefore, the equivalent impact velocity for my 85mm APCR round at 2,000 yards is 3,150 ft/s for the M304. That means, in theory, that the M304 would have to impact a target at 3,150 ft/s to produce equivalent penetration of RHA to my 85mm APCR striking at just 2,800 ft/s.

Now, we head back to that chart:



On the left side of the graph, we put our cursor on the line that corresponds to approximately 3,150 ft/s velocity, and follow it over until it hits the curved line that corresponds with the angle of plate we care about - arbitrarily, let's pick 20 degrees. Then, we follow that point straight down until it hits the x-axis:



Therefore, we estimate that at 2,000 yards, my 85mm has just over 10 inches of RHA penetration - not bad at all for a lowly APCR round!

Share this post

Link to post
Share on other sites

@N-L-M expressed some skepticism that the pressure value I was using was correct, so I recalibrated for the 90mm M3 gun:





T30E16 HVAP:




Therefore I would recommend using 41000 CUP for APCBC and 42800 CUP for APCR, instead of 45500.


Corrected figures for my 85mm are 3,845 ft/s muzzle velocity, 2,000 yd impact velocity of 2,692 ft/s, and approximately 9.5 inches of RHA penetration at 20 degrees at 2,000 yd.

Share this post

Link to post
Share on other sites

The gun designer Excel thingy I mentioned: https://drive.google.com/open?id=1CvD4XOW-iKXxuuXQq5xSpNXHayUIVs2a



  • Odermatt calculator (sheathed long rods version)
  • De Marre calculator
  • Statistical mass/performance estimators for HE, HEAT, HEAT-FS
  • Cartridge designer (note: accuracy may vary - WW2-era cartridges differed wildly in terms of the performance extracted from a given case volume)
  • Black powder cartridge designer (note: for steampunk guns)


Note: for longrods I recommend using Solver with the following values:

  • Velocity greater than 1250m/s
  • L/D ratio less than 30
  • Core diameter greater than or equal to 15mm


Also keep an eye on the core/jacket ratio to make sure that stupid things aren't happening.


Edit: also note that the longrods output is currently set to tungsten rather than DU and the steel monoblock equivalent isn't shown. Additionally, the target is steel at 0'.

Share this post

Link to post
Share on other sites

Probably niche and not useful for most people here, but: 




Estimating fragmentation (velocity and direction) of APHE shells. Seems solid from my ignorant point of view. 

Share this post

Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By Collimatrix
      Shortly after Jeeps_Guns_Tanks started his substantial foray into documenting the development and variants of the M4, I joked on teamspeak with Wargaming's The_Warhawk that the next thing he ought to do was a similar post on the T-72.
      Haha.  I joke.  I am funny man.
      The production history of the T-72 is enormously complicated.  Tens of thousands were produced; it is probably the fourth most produced tank ever after the T-54/55, T-34 and M4 sherman.
      For being such an ubiquitous vehicle, it's frustrating to find information in English-language sources on the T-72.  Part of this is residual bad information from the Cold War era when all NATO had to go on were blurry photos from May Day parades:

      As with Soviet aircraft, NATO could only assign designations to obviously externally different versions of the vehicle.  However, they were not necessarily aware of internal changes, nor were they aware which changes were post-production modifications and which ones were new factory variants of the vehicle.  The NATO designations do not, therefore, necessarily line up with the Soviet designations.  Between different models of T-72 there are large differences in armor protection and fire control systems.  This is why anyone arguing T-72 vs. X has completely missed the point; you need to specify which variant of T-72.  There are large differences between them!
      Another issue, and one which remains contentious to this day, is the relation between the T-64, T-72 and T-80 in the Soviet Army lineup.  This article helps explain the political wrangling which led to the logistically bizarre situation of three very similar tanks being in frontline service simultaneously, but the article is extremely biased as it comes from a high-ranking member of the Ural plant that designed and built the T-72.  Soviet tank experts still disagree on this; read this if you have some popcorn handy.  Talking points from the Kharkov side seem to be that T-64 was a more refined, advanced design and that T-72 was cheap filler, while Ural fans tend to hold that T-64 was an unreliable mechanical prima donna and T-72 a mechanically sound, mass-producible design.
      So, if anyone would like to help make sense of this vehicle, feel free to post away.  I am particularly interested in:
      -What armor arrays the different T-72 variants use.  Diagrams, dates of introduction, and whether the array is factory-produced or a field upgrade of existing armor are pertinent questions.
      -Details of the fire control system.  One of the Kharkov talking points is that for most of the time in service, T-64 had a more advanced fire control system than contemporary T-72 variants.  Is this true?  What were the various fire control systems in the T-64 and T-72, and what were there dates of introduction?  I am particularly curious when Soviet tanks got gun-follows-sight FCS.
      -Export variants and variants produced outside the Soviet Union.  How do they stack up?  Exactly what variant(s) of T-72 were the Iraqis using in 1991?

      -WTF is up with the T-72's transmission?  How does it steer and why is its reverse speed so pathetically low?
    • By Proyas
      Hi guys,
      I recently read about upgrade packages to old tanks like the M-60 and T-55, but kept seeing comments from people saying they would still be obsolete. Is this because the M-60 and T-55 are made entirely of steel (and not composite) armor?  
      I have this theory that thick steel armor is probably totally obsolete, and is just dead weight in the age of lighter weight composite armor. You can bolt on upgrades to an M-60 or T-55, but you're still hamstrung by the fact that either tank will be carrying around tons of useless steel. Am I right? 
      Also, if we wanted to upgrade old tanks like that, wouldn't the best idea be to develop a new turret--with lighter, modern composite armor and better technology inside--and just drop it into the old tanks? The hulls would still be made of heavy steel, but that could be helped a bit by adding applique armor. 
      Here are some of the upgrades I read about: 
    • By Akula_941
      Anti-air bobcat design to take away driver's hearing in maximum efficiency

      SH11  155mm SPG

    • By Walter_Sobchak
      Since we don't have a thread for British and Commonwealth tanks of WWII, I thought I would start one.  
      Check out this manufacturers instructional video on the Crusader.
  • Create New...