Jump to content
Sturgeon's House
Sign in to follow this  
EnsignExpendable

An Effortpost on Tank Suspensions

Recommended Posts

The mean goons over on SA roped me into writing an effortpost, so I figured it's only fair that you freeloaders get to enjoy it too.

 

So, suspensions. I'm going to introduce the book as well because it's probably the most Soviet book that ever existed. It is called TANK.
 
CV1IIOBl.pngc3yUXAMl.png
 
What makes this book so Soviet? Well, here's the first paragraph of the introduction:
 
"Under the guidance of the Communist party of the Soviet Union, our people built socialism, achieved a historical victory in the Great Patriotic War, and in launched an enormous campaign for the creation of a Communist society."
 
The next paragraph talks about the 19th Assembly of the CPSU, then a bit about how in the Soviet Union man no longer exploits man (now it's the other way around :haw:), then a little bit about the war again, then spends another three pages stroking the party's dick about production and growth. The word "tank" does not appear in the introduction.
 
The historical prelude section is written by someone who is a little closer to tanks and might be a little less politically reliable, since they actually give Tsarists credit for things. I guess they have to, since foreigners are only mentioned in this section when they are amazed by Russian progress. The next chapter is a Wikipedia-grade summary of various tank designs that gives WWI designs a pretty fair evaluation, then a huge section on Soviet tank development, then a tiny section on foreign tanks in WWII mostly consisting of listing all the mistakes their designers made. The party must have recuperated since the intro since we're in for another three pages of fellatio.
 
Having read so far, you might think that there is very little value in this sort of book, but then the writing style does a complete 180 and the rest of the book is 100% apolitical and mostly looks like this.
 
wkvzQSA.png
 
Which is what we care about, so let's begin. Bonus points to anyone who can identify what the diagram above is about. Sorry in advance if my terminology isn't 100% correct, there aren't exactly a lot of tank dictionaries lying around.
 
The book skips over primitive unsprung suspensions of WWI and starts off with describing the difference between independent suspensions and road-arm suspensions. In the former, every wheel is independently sprung. In the latter, two or more wheels are joined together by a spring. Some suspensions have a mix of these designs. For example, here's a simple road-arm suspension used in some Vickers designs and their derivatives. The two road wheels are connected by a spring and to the hull by a lever. A weight pushing down on top of the pair of wheels is going to compress the spring that's perpendicular to the ground, bringing the wheels closer together.
 
rvijiUp.png
 
Here's a more complex road-arm suspension, with four wheels per unit instead of one, also AFAIK first used by Vickers and then migrating to an enormous amount of designs from there. This suspension provides springiness through a leaf spring that you can see above the four road wheels. The two pairs of wheels don't have their own springs. The black circles in the image show where the suspension elements can turn, keeping the tank flat while hugging the terrain.
 
0LVAqNI.png
 
Here's another road-arm suspension, similar to the first one. In this case, the spring is made of rubber instead of metal. Otherwise, the design is very similar. Two rubber bungs on the bottom of the axles prevent the wheels from slamming into each other too hard. This design was used by French tanks and nobody else.
 
288owU2.png
 
For some reason, volute spring suspensions are completely absent from this section. This is the best image of a Vertical Volute Spring Suspension (early Shermans) that I could find. It's kind of similar to the first image, except the spring is a volute spring, and it's vertical instead of horizontal. Later Shermans used horizontal volute springs.
 
ML0MT7F.jpg
 
Of course, as the book points out, these suspension elements are very easy to damage externally and knocking out one part of the suspension will typically take out the rest of the assembly, so independent suspensions are the way to go. The best way to do this are torsion bars. The bar is attached to a lever that holds your road wheel. As pressure is applied to the road wheel, the bar subtly twists, remaining elastic enough to reset once the pressure is off. This image is kind of weird, but the part in the center is the part on the far left, zoomed in, showing you where the lever and the opposite side's torsion bar are attached. As you can see, road wheels in a torsion bar suspension are going to be a little off on one side, unlike what you're used to on cars and such.
 
E7XpCjQ.png
 
Now, since torsion bars are metal bars on the floor, they are going to make your tank taller. If you want a tank that's as short as possible at the expense of width, you may want to consider a Christie like suspension. Here, much like in torsion bars, the pressure is transferred inside the tank, but instead of a bar to absorb it, it's a spring in a vertical (or angled) tube. In most tanks with this kind of suspension, the springs are on the inside, but if you want to make the tank roomier on the inside, you can have them on the outside too. If you're really fancy, you can put a spring within the spring like in this diagram.
 
K4rv59d.png
 
Since this is a Soviet tank book, you gotta have a huge T-34 diagram. Here it is.
 
y7GK44o.png
 
The T-34 uses Christie springs, which you can see in the diagram. The road wheel configuration is a mix of the externally dampened and internally dampened "Stalingrad type" road wheels. The former have more rubber for absorbing hits from terrain, but the latter use less rubber. When you're in Stalingrad and you have to make tanks with a rubber deficit, that's the kind you want. When road wheels from other factories were available, they would go in the front and then the back to absorb most of the impact from harsh terrain features, and the steel-rimmed wheels went in the middle. The diagram shows how both types of wheels work.
 
Rubber can't really take too much punishment, so the KV, being a heavy tank, went with internally dampened road wheels from the very beginning, with a ring of rubber on the inside around the axle.
 
MnF0ioH.png
 
And finally, idlers. If you don't have big Christie type wheels, you gotta have idlers so your saggy track doesn't fall off. This diagram shows the rubber coating on an idler, and also how the rear idler can adjust to tighten the track. A loose track makes more noise, gets worn more, and is liable to slip off.
 
BcJ0DwS.png
 
Keep those tracks tight, and you'll be zooming towards glorious victory in no time flat!
 
j4Rjdcz.png
 
Now, the book ends and my own stuff begins. I mentioned rubber, but not what a headache it was to tank designers. In hot weather, the rubber in your tracks and wheels tends to fall apart. If you go fast enough, tires that don't have proper ventilation are going to melt too. There was a lot of pre-war panic in the USSR about the German PzIII being able to do 70 kph on tracks, but once the Soviets started building SU-76Is on the PzIII chassis they found out that the speed had to be limited to a whopping 25 kph to keep the wear to a reasonable level.

Share this post


Link to post
Share on other sites

I'm pretty sure that in the torsion bar case the lever that connects the bar and the road wheel is called a "swing arm".

I might have to write something about hydraulic suspension now, for those special snowflake tanks.

Share this post


Link to post
Share on other sites

So, now we need to add what is left - hydraulic, hydropneumatic, and bizzare ones. Any good book on those suspensions?

 

I will add that Merkava's Christie-like suspension is eating a lot of space in the hull sides, that could have been used to mount armor modules, a-la Object 477 Molot, or Object 148/T-14. In the same time, this suspension allow to make hull bottom V-shaped (not much, but it is better than nothing).

Share this post


Link to post
Share on other sites

I'm pretty sure that in the torsion bar case the lever that connects the bar and the road wheel is called a "swing arm".

I might have to write something about hydraulic suspension now, for those special snowflake tanks.

 

Yes, the arm that the road wheels are mounted to is a swing arm.

 

This picture shows the relationship between the torsion bar, swing arm and road wheel pretty well:

torsion-shema.gif

 

 

In a lot of ways, the insane suspensions with lots of road wheels on levers with respect to each other are the interesting ones.  All modern, independent suspensions do basically the same thing with one spring per road wheel.  The only differences are if that spring is a torsion bar, a coil spring (either inside the hull in Christie, or outside in the T67/Merkava/E100), a stack of Belleville washers, or a volume of air being compressed by hydraulics.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By N-L-M
      ATTENTION DUELISTS:
      @Toxn
      @LostCosmonaut
      @Lord_James
      @DIADES
      @Datengineerwill
      @Whatismoo
      @Kal
      @Zadlo
      @Xoon
      detailed below is the expected format of the final submission.
      The date is set as Wednesday the 19th of June at 23:59 GMT.
      Again, incomplete designs may be submitted as they are and will be judged as seen fit.
       
      FINAL SUBMISSION:
      Vehicle Designation and name

      [insert 3-projection (front, top, side) and isometric render of vehicle here)



      Table of basic statistics:

      Parameter

      Value

      Mass, combat


       
      Length, combat (transport)


       
      Width, combat (transport)


       
      Height, combat (transport)


       
      Ground Pressure, MMP (nominal)


       
      Estimated Speed


       
      Estimated range


       
      Crew, number (roles)


       
      Main armament, caliber (ammo count ready/stowed)


       
      Secondary armament, caliber (ammo count ready/stowed)


       

       
      Vehicle designer’s notes: explain the thought process behind the design of the vehicle, ideas, and the development process from the designer’s point of view.

      Vehicle feature list:
      Mobility:

      1.     Link to Appendix 1- RFP spreadsheet, colored to reflect achieved performance.

      2.     Engine- type, displacement, rated power, cooling, neat features.

      3.     Transmission- type, arrangement, neat features.

      4.     Fuel- Type, volume available, stowage location, estimated range, neat features.

      5.     Other neat features in the engine bay.

      6.     Suspension- Type, Travel, ground clearance, neat features.

      Survivability:

      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.

      2.     Link to Appendix 2- armor array details.

      3.     Non-specified survivability features and other neat tricks- low profile, gun depression, instant smoke, cunning internal arrangement, and the like.

      Firepower:

      A.    Weapons:

      1.     Link to Appendix 1- RFP spreadsheet, colored to reflect achieved performance.

      2.     Main Weapon-

      a.      Type

      b.      Caliber

      c.      ammunition types and performance (short)

      d.     Ammo stowage arrangement- numbers ready and total, features.

      e.      FCS- relevant systems, relevant sights for operating the weapon and so on.

      f.      Neat features.

      3.     Secondary weapon- Similar format to primary. Tertiary and further weapons- likewise.

      4.     Link to Appendix 3- Weapon system magic. This is where you explain how all the special tricks related to the armament that aren’t obviously available using Soviet 1961 tech work, and expand to your heart’s content on extimated performance and how these estimates were reached.

      B.    Optics:

      1.     Primary gunsight- type, associated trickery.

      2.     Likewise for any and all other optics systems installed, in no particular order.

      C.    FCS:

      1.     List of component systems, their purpose and the basic system architecture.

      2.     Link to Appendix 3- weapon system magic, if you have long explanations about the workings of the system.

      Fightability:

      1.     List vehicle features which improve its fightability and useability.

      Additonal Features:

      Feel free to list more features as you see fit, in more categories.

      Free expression zone: Let out your inner Thetan to fully impress the world with the fruit of your labor. Kindly spoiler this section if it’s very long.


       Example for filling in Appendix 1
    • By N-L-M
      Restricted: for Operating Thetan Eyes Only

      By order of Her Gracious and Serene Majesty Queen Diane Feinstein the VIII

      The Dianetic People’s Republic of California

      Anno Domini 2250

      SUBJ: RFP for new battle tank

      1.      Background.
      As part of the War of 2248 against the Perfidious Cascadians, great deficiencies were discovered in the Heavy tank DF-1. As detailed in report [REDACTED], the DF-1 was quite simply no match for the advanced weaponry developed in secret by the Cascadian entity. Likewise, the DF-1 has fared poorly in the fighting against the heretical Mormonhideen, who have developed many improvised weapons capable of defeating the armor on this vehicle, as detailed in report [REDACTED]. The Extended War on the Eastern Front has stalled for want of sufficient survivable firepower to push back the Mormon menace beyond the Colorado River south of the Vegas Crater.
      The design team responsible for the abject failure that was the DF-1 have been liquidated, which however has not solved the deficiencies of the existing vehicle in service. Therefore, a new vehicle is required, to meet the requirements of the People’s Auditory Forces to keep the dream of our lord and prophet alive.


       
      Over the past decade, the following threats have presented themselves:

      A.      The Cascadian M-2239 “Norman” MBT and M-8 light tank

      Despite being approximately the same size, these 2 vehicles seem to share no common components, not even the primary armament! Curiously, it appears that the lone 120mm SPG specimen recovered shares design features with the M-8, despite being made out of steel and not aluminum like the light tank. (based on captured specimens from the battle of Crater Lake, detailed in report [REDACTED]).
      Both tanks are armed with high velocity guns.

      B.      The Cascadian BGM-1A/1B/1C/1D ATGM

      Fitted on a limited number of tank destroyers, several attack helicopters, and (to an extent) man-portable, this missile system is the primary Cascadian anti-armor weapon other than their armored forces. Intelligence suggests that a SACLOS version (BGM-1C) is in LRIP, with rumors of a beam-riding version (BGM-1D) being developed.

      Both warheads penetrate approximately 6 cone diameters.

      C.      Deseret tandem ATR-4 series
      Inspired by the Soviet 60/105mm tandem warhead system from the late 80s, the Mormon nation has manufactured a family of 2”/4” tandem HEAT warheads, launched from expendable short-range tube launchers, dedicated AT RRs, and even used as the payload of the JS-1 MCLOS vehicle/man-portable ATGM.
      Both warheads penetrate approximately 5 cone diameters.

      D.      Cascadian HEDP 90mm rocket
      While not a particularly impressive AT weapon, being of only middling diameter and a single shaped charge, the sheer proliferation of this device has rendered it a major threat to tanks, as well as lighter vehicles. This weapon is available in large numbers in Cascadian infantry squads as “pocket artillery”, and there are reports of captured stocks being used by the Mormonhideen.
      Warhead penetrates approximately 4 cone diameters.

      E.      Deseret 40mm AC/ Cascadian 35mm AC
      These autocannon share broadly similar AP performance, and are considered a likely threat for the foreseeable future, on Deseret armored cars, Cascadian tank destroyers, and likely also future IFVs.

      F.      IEDs

      In light of the known resistance of tanks to standard 10kg anti-tank mines, both the Perfidious Cascadians and the Mormonhideen have taken to burying larger anti-tank A2AD weaponry. The Cascadians have doubled up some mines, and the Mormons have regularly buried AT mines 3, 4, and even 5 deep.

      2.      General guidelines:

      A.      Solicitation outline:
      In light of the differing requirements for the 2 theaters of war in which the new vehicle is expected to operate, proposals in the form of a field-replaceable A-kit/B-kit solution will be accepted.

      B.      Requirements definitions:
      The requirements in each field are given in 3 levels- Threshold, Objective, and Ideal.
      Threshold is the minimum requirement to be met; failure to reach this standard may greatly disadvantage any proposal.

      Objective is the threshold to be aspired to; it reflects the desires of the People’s Auditory Forces Armored Branch, which would prefer to see all of them met. At least 70% must be met, with bonus points for any more beyond that.

      Ideal specifications are the maximum of which the armored forces dare not even dream. Bonus points will be given to any design meeting or exceeding these specifications.

      C.      All proposals must accommodate the average 1.7m high Californian recruit.

      D.      The order of priorities for the DPRC is as follows:

      a.      Vehicle recoverability.

      b.      Continued fightability.

      c.       Crew survival.

      E.      Permissible weights:

      a.      No individual field-level removable or installable component may exceed 5 tons.

      b.      Despite the best efforts of the Agriculture Command, Californian recruits cannot be expected to lift weights in excess of 25 kg at any time.

      c.       Total vehicle weight must remain within MLC 120 all-up for transport.

      F.      Overall dimensions:

      a.      Length- essentially unrestricted.

      b.      Width- 4m transport width.

                                                                    i.     No more than 4 components requiring a crane may be removed to meet this requirement.

                                                                   ii.     Any removed components must be stowable on top of the vehicle.

      c.       Height- The vehicle must not exceed 3.5m in height overall.

      G.     Technology available:

      a.      Armor:
      The following armor materials are in full production and available for use. Use of a non-standard armor material requires permission from a SEA ORG judge.
      Structural materials:

                                                                    i.     RHA/CHA

      Basic steel armor, 250 BHN. The reference for all weapon penetration figures, good impact properties, fully weldable. Available in thicknesses up to 150mm (RHA) or 300mm (CHA).
      Density- 7.8 g/cm^3.

                                                                   ii.     Aluminum 5083

      More expensive to work with than RHA per weight, middling impact properties, low thermal limits. Excellent stiffness.

       Fully weldable. Available in thicknesses up to 100mm.
      Mass efficiency vs RHA of 1 vs CE, 0.9 vs KE.
      Thickness efficiency vs RHA of 0.33 vs CE, 0.3 vs KE.
      Density- 2.7 g/cm^3 (approx. 1/3 of steel).

      For structural integrity, the following guidelines are recommended:

      For light vehicles (less than 40 tons), not less than 25mm RHA/45mm Aluminum base structure

      For heavy vehicles (70 tons and above), not less than 45mm RHA/80mm Aluminum base structure.
      Intermediate values for intermediate vehicles may be chosen as seen fit.
      Non-structural passive materials:

                                                                  iii.     HHA

      Steel, approximately 500 BHN through-hardened. Approximately twice as effective as RHA against KE and HEAT on a per-weight basis. Not weldable, middling shock properties. Available in thicknesses up to 25mm.
      Density- 7.8g/cm^3.

                                                                  iv.     Glass textolite

      Mass efficiency vs RHA of 2.2 vs CE, 1.64 vs KE.

      Thickness efficiency vs RHA of 0.52 vs CE, 0.39 vs KE.
      Density- 1.85 g/cm^3 (approximately ¼ of steel).
      Non-structural.

                                                                   v.     Fused silica

      Mass efficiency vs RHA of 3.5 vs CE, 1 vs KE.

      Thickness efficiency vs RHA of 1 vs CE, 0.28 vs KE.
      Density-2.2g/cm^3 (approximately 1/3.5 of steel).
      Non-structural, requires confinement (being in a metal box) to work.

                                                                  vi.     Fuel

      Mass efficiency vs RHA of 1.3 vs CE, 1 vs KE.

      Thickness efficiency vs RHA of 0.14 vs CE, 0.1 vs KE.

      Density-0.82g/cm^3.

                                                                vii.     Assorted stowage/systems

      Mass efficiency vs RHA- 1 vs CE, 0.8 vs KE.

                                                               viii.     Spaced armor

      Requires a face of at least 25mm LOS vs CE, and at least 50mm LOS vs KE.

      Reduces penetration by a factor of 1.1 vs CE or 1.05 vs KE for every 10 cm air gap.
      Spaced armor rules only apply after any standoff surplus to the requirements of a reactive cassette.

      Reactive armor materials:

                                                                  ix.     ERA-light

      A sandwich of 3mm/3mm/3mm steel-explodium-steel.
      Requires mounting brackets of approximately 10-30% cassette weight.

      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).

                                                                   x.     ERA-heavy

      A sandwich of 15mm steel/3mm explodium/9mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).

                                                                  xi.     NERA-light

      A sandwich of 6mm steel/6mm rubber/ 6mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.

                                                                 xii.     NERA-heavy

      A sandwich of 30mm steel/6m rubber/18mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.

      The details of how to calculate armor effectiveness will be detailed in Appendix 1.

      b.      Firepower

                                                                    i.     2A46 equivalent tech- pressure limits, semi-combustible cases, recoil mechanisms and so on are at an equivalent level to that of the USSR in the year 1960.

                                                                   ii.     Limited APFSDS (L:D 15:1)- Spindle sabots or bourelleted sabots, see for example the Soviet BM-20 100mm APFSDS.

                                                                  iii.     Limited tungsten (no more than 100g per shot)

                                                                  iv.     Californian shaped charge technology- 5 CD penetration for high-pressure resistant HEAT, 6 CD for low pressure/ precision formed HEAT.

                                                                   v.     The general issue GPMG for the People’s Auditory Forces is the PKM. The standard HMG is the DShK.

      c.       Mobility

                                                                    i.     Engines tech level:

      1.      MB 838 (830 HP)

      2.      AVDS-1790-5A (908 HP)

      3.      Kharkov 5TD (600 HP)

                                                                   ii.     Power density should be based on the above engines. Dimensions are available online, pay attention to cooling of 1 and 3 (water cooled).

                                                                  iii.     Power output broadly scales with volume, as does weight. Trying to extract more power from the same size may come at the cost of reliability (and in the case of the 5TD, it isn’t all that reliable in the first place).

                                                                  iv.     There is nothing inherently wrong with opposed piston or 2-stroke engines if done right.

      d.      Electronics

                                                                    i.     LRFs- unavailable

                                                                   ii.     Thermals-unavailable

                                                                  iii.     I^2- limited

      3.      Operational Requirements.

      The requirements are detailed in the appended spreadsheet.

      4.      Submission protocols.

      Submission protocols and methods will be established in a follow-on post, nearer to the relevant time.
       
      Appendix 1- armor calculation
      Appendix 2- operational requirements
       
      Good luck, and may Hubbard guide your way to enlightenment!
    • By Collimatrix
      Shortly after Jeeps_Guns_Tanks started his substantial foray into documenting the development and variants of the M4, I joked on teamspeak with Wargaming's The_Warhawk that the next thing he ought to do was a similar post on the T-72.
       
      Haha.  I joke.  I am funny man.
       
      The production history of the T-72 is enormously complicated.  Tens of thousands were produced; it is probably the fourth most produced tank ever after the T-54/55, T-34 and M4 sherman.
       
      For being such an ubiquitous vehicle, it's frustrating to find information in English-language sources on the T-72.  Part of this is residual bad information from the Cold War era when all NATO had to go on were blurry photos from May Day parades:
       

       
      As with Soviet aircraft, NATO could only assign designations to obviously externally different versions of the vehicle.  However, they were not necessarily aware of internal changes, nor were they aware which changes were post-production modifications and which ones were new factory variants of the vehicle.  The NATO designations do not, therefore, necessarily line up with the Soviet designations.  Between different models of T-72 there are large differences in armor protection and fire control systems.  This is why anyone arguing T-72 vs. X has completely missed the point; you need to specify which variant of T-72.  There are large differences between them!
       
      Another issue, and one which remains contentious to this day, is the relation between the T-64, T-72 and T-80 in the Soviet Army lineup.  This article helps explain the political wrangling which led to the logistically bizarre situation of three very similar tanks being in frontline service simultaneously, but the article is extremely biased as it comes from a high-ranking member of the Ural plant that designed and built the T-72.  Soviet tank experts still disagree on this; read this if you have some popcorn handy.  Talking points from the Kharkov side seem to be that T-64 was a more refined, advanced design and that T-72 was cheap filler, while Ural fans tend to hold that T-64 was an unreliable mechanical prima donna and T-72 a mechanically sound, mass-producible design.
       
      So, if anyone would like to help make sense of this vehicle, feel free to post away.  I am particularly interested in:
       
      -What armor arrays the different T-72 variants use.  Diagrams, dates of introduction, and whether the array is factory-produced or a field upgrade of existing armor are pertinent questions.
       
      -Details of the fire control system.  One of the Kharkov talking points is that for most of the time in service, T-64 had a more advanced fire control system than contemporary T-72 variants.  Is this true?  What were the various fire control systems in the T-64 and T-72, and what were there dates of introduction?  I am particularly curious when Soviet tanks got gun-follows-sight FCS.
       
      -Export variants and variants produced outside the Soviet Union.  How do they stack up?  Exactly what variant(s) of T-72 were the Iraqis using in 1991?

      -WTF is up with the T-72's transmission?  How does it steer and why is its reverse speed so pathetically low?
       
       
    • By Sturgeon
      This is the place for flame wars about rifle-caliber MGs versus autocannons for tank coaxial weaponry. First, we have Ensign's blog post about tank machine guns:
       

×
×
  • Create New...