Jump to content
Sturgeon's House

Search the Community

Showing results for tags 'aircraft design'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • The Outer Rim
    • Open Discussion
    • Aviation
    • Elon Musk: Making Space Great Again
    • Naval Discussion
    • Mechanized Warfare
    • Ballistics Science Discussion
    • Infantry Tools & Tactics
    • Dr. Strangelove's Nuclear Palace
    • Biosciences
    • History, Culture, and Archaeology
    • Fiction & Entertainment
    • Computers, Software, and Tech Support
    • Historical Warfare
    • Sturgeon's Contests

Blogs

  • Of IS-7s and Other Things
  • Archive Awareness
  • Unstart's Blog
  • The Sherman Blog
  • U-47

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 5 results

  1. Compared to the most well known Japanese fighter of World War 2, the A6M “Zero”, the J2M Raiden (“Jack”) was both less famous and less numerous. More than 10,000 A6Ms were built, but barely more than 600 J2Ms were built. Still, the J2M is a noteworthy aircraft. Despite being operated by the Imperial Japanese Navy (IJN), it was a strictly land-based aircraft. The Zero was designed with a lightweight structure, to give extreme range and maneuverability. While it had a comparatively large fuel tank, it was lightly armed, and had virtually no armor. While the J2M was also very lightly built, it wa
  2. But if you try sometimes... Fighter aircraft became much better during the Second World War. But, apart from the development of engines, it was not a straightforward matter of monotonous improvement. Aircraft are a series of compromises. Improving one aspect of performance almost always compromises others. So, for aircraft designers in World War Two, the question was not so much "what will we do to make this aircraft better?" but "what are we willing to sacrifice?" To explain why, let's look at the forces acting on an aircraft: Lift Lift is the force that keeps th
  3. One of the frustrations of being a child and reading lots and lots of books on combat aircraft was that there would be impressive-sounding technical terms bandied about, but no explanations. Or if there were explanations I didn't understand them because I was a child. One of the terms that got thrown around a lot was "relaxed stability" or "artificial stability" or even "instability," and this was given as one of the reasons for the F-16's superiority. Naturally, an explanation of what on earth this was was not forthcoming, but it had something to do with making the F-16 more maneuverabl
  4. Every so often someone asks a question about the advantages of forward-swept wings, and usually they get a shitty half-assed answer about how they somehow improve maneuverability and stuff. I will attempt to provide a fully-assed answer. The short version is that forward swept wings do roughly the same thing as conventional aft swept wings; they increase critical mach number. I found an excellent video explaining transonic effects, so watch that first if you don't already know what that is. Typically, a straight wing starts experiencing shock wave buildup at around ma
  5. This is a 737-200. It has two JT8D turbofan engines that live happily in pods underneath the wings, guzzling down air and Jet-A. This is an ME-262. It has two Jumo 004 engines that live... not exactly happily in pods under the wings, guzzling down air and whatever the Nazis had that was flammable. This is an F-14A of VF-84 "Jolly Rogers." It has two TF30 low bypass turbofans that sit at the end of long inlets with three variable-geometry shock ramps, a variable-position spill door and a boundary layer diverter per engine. These elements are computer-controlled to optim
×
×
  • Create New...