Jump to content
Sturgeon's House
  1. Sturgeon

    Sturgeon

  • Similar Content

    • By Collimatrix
      At the behest of @Lord_James, this shall be the thread for general discussion of conventional passive metallic armor.  Whether it's steel, titanium, magnesium, exotic laminates of all three, this is the thread for it.
       
      In answer to your earlier question, Lord_James, relatively small amounts of boron, in steels that have the appropriate levels of carbon, form intergranular barriers that dramatically slow the diffusion of carbon out of the austenite crystals during quenching.  Long story short, this means that the depth of material that can be effectively hardened is much greater.
    • By Must Be Spoon Fed
      Hello,
       
      I'm interested in Soviet armor production and deployment. Especially of T-55 tank and its variants. Sadly, most sources touch this subject very generally while I would want to get a more detailed view. How much tanks were produced in which country and at what year. Were Soviets producing armor for themselves or for export. Any source which would go into bit more detail about it is appreciated. I would appreciate if someone could help me find information required about those tanks as so far I can rely only on quite general information. 
    • By SirFlamenco
      I want to calculate the weight required to make an armor that can resist 7.62 RUAG SWISS AP, also known as VPAM level 12. I needed a baseline so I took NIJ Level IV and then tried to find the difference of weight so I could get a percentage. The only plate that's still made for this threat is the TenCate CX-950 IC. This plate is 8.93 lbs for a sapi medium and is alumina in-conjonction with soft armor. I then needed to find a Level IV alumina IC, which I found on UARM's website. It's 7.6 lbs, so if we do 8.93/7.6 we get around 1.175, but I put 1.25 considering UARM's plates are often quite heavy. Now that we have 1.25, we can start applying it to silicon carbide and boron carbide. Denmark's group has a level IV silicon carbide plate at 5.95 lbs, so times 1.25 it gives 7.4375. Hesco's boron carbide IV plate is 5.1 lbs, so times 1.25 we get 6.375.
       
      Now, I wanted to know what was the weight for hardened steel. I took MARS 600, which is one of the best armor steel you can get. Using this page, I can easily calculate that you would need about 19mm to stop it. Using a calculator, we know that a full inch sapi medium plate would weight 33.9 lbs. 19mm/25.4mm = 0.748 inch so if we do 0.748*33.9 we get 25.3572 lbs. 
       
      The problem is obvious : How is boron carbide 4 times as light as steel? Silicon carbide is 3.4 times as light too? It doesn't make any sense, giving that they are both around 2.2 ME and hardened steel is 1.3 ME, so it should be around 1.7 times heavier for steel. What did I get wrong? 
    • By Indigo
      Hey y'all, long time no see. I Thought I understood the premise of perforated armor, but earlier today I realized I probably don't. I thought perforated armor was just supposed to damage/decelerate a projectile as it passed through, but then I realized that I thought that's what spaced armor is for, so what's the difference. I also realized I may not really know what perforated armor is at all. I realized that I simultaneously associate two fairly different images with perforated armor.

       
      I imagine this as just breaking small projectiles as they hit it. But then there's this

      which appears to have slots all throughout it, which is more of what I think of when I think of something being perforated, but this doesn't look like it really serves the same purpose, nor do I have any idea what purpose this does serve now that I think about it. So what am I missing about perforated armor(and whatever one of these things is if not perforated armor)?
×
×
  • Create New...