Jump to content
Sturgeon's House

COMPETITION Steel Chariot of The Prairie: The Lone Free State's First Battle Tank (2247)


 Share

Recommended Posts

3 hours ago, Sturgeon said:

 

The arrays are made beforehand and then cast-in. Does it look like a pain in the ass to do? Absolutely. As a modeling project, it's a lot of fun however. I've learned a lot about using the "intersect" feature. It's worth noting that a number of Soviet tank designs did this very thing, so it's not unprecedented.

The alternative to casting them in, as you already guessed, is to have a bunch of castings glued together in a weldment around the arrays. But I don't find that nearly as fun to think about, conceptually.

Obviously, the reasonable thing to do would be to make yet another NERA box tank, but that's boooooooring.

 

AFAIK the Soviets didn't make it cast-in because it's impossible (better to say you can do that with sand rods like in T-72A/M but not with NERA array). They simply cast an opened pocket, put the special armor array inside and welded a cover on top. There are plenty of reason why it is impossible. 

 

- Temperature of the molten steel is around 1600°C. In such temperature your special armor array would partially melt (rubber for sure) and partially go through very extreme heat treatment which would definitely ruin its properties. 

- Cast steel has high shrinkage ratio around 0,5% at these distances. Anything closed inside which is not extremely rigid would be simply deformed by the shrinking material and anything rigid enough (thick ceramic for example) would bring high internal stress in the steel (personal experience with overmoulding of different materials - in my case combination of steel and plastic - even overmoulding of steel by plastic is not that easy thing). 

 

From other things I see other issues. Cast steel has low flowability (lower than cast iron). It requires relatively higher thickness/to length ratios and thicker sections need to be near the gate. If you make something like a rectangle of two thick walls connected with two thin walls you can not fill it without having two gates for exmaple. 

 

Uneven thickness also inevitably causes uneven cooling which results in deformations of the walls. 

 

Don't get me wrong but for me your design is not feasible for casting. 

Link to comment
Share on other sites

38 minutes ago, Beer said:

 

AFAIK the Soviets didn't make it cast-in because it's impossible (better to say you can do that with sand rods like in T-72A/M but not with NERA array). They simply cast an opened pocket, put the special armor array inside and welded a cover on top. There are plenty of reason why it is impossible. 

 

- Temperature of the molten steel is around 1600°C. In such temperature your special armor array would partially melt (rubber for sure) and partially go through very extreme heat treatment which would definitely ruin its properties. 

- Cast steel has high shrinkage ratio around 0,5% at these distances. Anything closed inside which is not extremely rigid would be simply deformed by the shrinking material and anything rigid enough (thick ceramic for example) would bring high internal stress in the steel (personal experience with overmoulding of different materials - in my case combination of steel and plastic - even overmoulding of steel by plastic is not that easy thing). 

 

From other things I see other issues. Cast steel has low flowability (lower than cast iron). It requires relatively higher thickness/to length ratios and thicker sections need to be near the gate. If you make something like a rectangle of two thick walls connected with two thin walls you can not fill it without having two gates for exmaple. 

 

Uneven thickness also inevitably causes uneven cooling which results in deformations of the walls. 

 

Don't get me wrong but for me your design is not feasible for casting. 

 

Nah, it's fine.

Link to comment
Share on other sites

12 minutes ago, Sturgeon said:

 

M1A2C. My tank is sitting at 72 m.t.

 

In the immortal words of Dos Gringos, that's a huge bitch. Looks pretty, though, the turret is giving me M60 needlenose vibes.

 

I'm working very hard to keep it under 100,000lb cause I want that sweet sweet PWR, and I've only got about 1175hp to play with. 

Link to comment
Share on other sites

18 minutes ago, A. T. Mahan said:

 

In the immortal words of Dos Gringos, that's a huge bitch. Looks pretty, though, the turret is giving me M60 needlenose vibes.

 

I'm working very hard to keep it under 100,000lb cause I want that sweet sweet PWR, and I've only got about 1175hp to play with. 

 

In terms of the field here, my tank is middling weight.

 

Starting engine is 1200hp bored out 1790 equivalent, with upgrade to a 1500hp MB 873 equivalent.

 

What drove the mass largely was the highly festooned hull, which is a bit bigger than usual and as you can see well protected by eleven ton side skirts. Height is 2.8m so nothing exceptional.

Link to comment
Share on other sites

I think this is the farthest I've managed to get in a competition (by how many necessary components I've completed). 

 

wqLMaeh.png

 

She's up to 44.8 tons, but I know I can get that down... each individual wheel is 540 lbs, which seems high... the tracks are also about 2.5 tons each (dont know how heavy they're suppose to be). 

 

 

Link to comment
Share on other sites

31 minutes ago, Lord_James said:

I think this is the farthest I've managed to get in a competition (by how many necessary components I've completed). 

 

wqLMaeh.png

 

She's up to 44.8 tons, but I know I can get that down... each individual wheel is 540 lbs, which seems high... the tracks are also about 2.5 tons each (dont know how heavy they're suppose to be). 

 

 

 

o9E5q5c.png

I recommend the Diehls.

My wheels are based on the US specification (used in more or less the same form from M48->M1), and they're 60kg per wheel. Two wheels per swing arm, eight roadwheels per side on your tank, that's about two tons.

If you take your armor weight and divide it by 0.55 you should get a good minimum all up weight value. If you don't reach that weight, time to look for things that may be too fragile (like suspension).

Link to comment
Share on other sites

2 hours ago, Sturgeon said:

 

o9E5q5c.png

I recommend the Diehls.

My wheels are based on the US specification (used in more or less the same form from M48->M1), and they're 60kg per wheel. Two wheels per swing arm, eight roadwheels per side on your tank, that's about two tons.

If you take your armor weight and divide it by 0.55 you should get a good minimum all up weight value. If you don't reach that weight, time to look for things that may be too fragile (like suspension).


I based my tracks on the T142’s used on the later M60s. They’re the same 28 inch width with replaceable rubber pads. 
 

I’m think my wheels just need to have some geometry fixes, and my suspension arms are too long: right now, she’s sitting at 29.5 inch ground clearance! I also completely forgot to add idler wheels. 
 

The torsion bars themselves are 3 inches in diameter. I thought I saw that 3 inches / 75mm was a decent thickness for such things, but cannot find it again. 

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Content

    • By N-L-M
      Restricted: for Operating Thetan Eyes Only
      By order of Her Gracious and Serene Majesty Queen Diane Feinstein the VIII
      The Dianetic People’s Republic of California
      Anno Domini 2250
      SUBJ: RFP for new battle tank
       
      1.      Background.
      As part of the War of 2248 against the Perfidious Cascadians, great deficiencies were discovered in the Heavy tank DF-1. As detailed in report [REDACTED], the DF-1 was quite simply no match for the advanced weaponry developed in secret by the Cascadian entity. Likewise, the DF-1 has fared poorly in the fighting against the heretical Mormonhideen, who have developed many improvised weapons capable of defeating the armor on this vehicle, as detailed in report [REDACTED]. The Extended War on the Eastern Front has stalled for want of sufficient survivable firepower to push back the Mormon menace beyond the Colorado River south of the Vegas Crater.
      The design team responsible for the abject failure that was the DF-1 have been liquidated, which however has not solved the deficiencies of the existing vehicle in service. Therefore, a new vehicle is required, to meet the requirements of the People’s Auditory Forces to keep the dream of our lord and prophet alive.
       
       
      Over the past decade, the following threats have presented themselves:
      A.      The Cascadian M-2239 “Norman” MBT and M-8 light tank
      Despite being approximately the same size, these 2 vehicles seem to share no common components, not even the primary armament! Curiously, it appears that the lone 120mm SPG specimen recovered shares design features with the M-8, despite being made out of steel and not aluminum like the light tank. (based on captured specimens from the battle of Crater Lake, detailed in report [REDACTED]).
      Both tanks are armed with high velocity guns.
      B.      The Cascadian BGM-1A/1B/1C/1D ATGM
      Fitted on a limited number of tank destroyers, several attack helicopters, and (to an extent) man-portable, this missile system is the primary Cascadian anti-armor weapon other than their armored forces. Intelligence suggests that a SACLOS version (BGM-1C) is in LRIP, with rumors of a beam-riding version (BGM-1D) being developed.
      Both warheads penetrate approximately 6 cone diameters.
      C.      Deseret tandem ATR-4 series
      Inspired by the Soviet 60/105mm tandem warhead system from the late 80s, the Mormon nation has manufactured a family of 2”/4” tandem HEAT warheads, launched from expendable short-range tube launchers, dedicated AT RRs, and even used as the payload of the JS-1 MCLOS vehicle/man-portable ATGM.
      Both warheads penetrate approximately 5 cone diameters.
      D.      Cascadian HEDP 90mm rocket
      While not a particularly impressive AT weapon, being of only middling diameter and a single shaped charge, the sheer proliferation of this device has rendered it a major threat to tanks, as well as lighter vehicles. This weapon is available in large numbers in Cascadian infantry squads as “pocket artillery”, and there are reports of captured stocks being used by the Mormonhideen.
      Warhead penetrates approximately 4 cone diameters.
      E.      Deseret 40mm AC/ Cascadian 35mm AC
      These autocannon share broadly similar AP performance, and are considered a likely threat for the foreseeable future, on Deseret armored cars, Cascadian tank destroyers, and likely also future IFVs.
      F.      IEDs
      In light of the known resistance of tanks to standard 10kg anti-tank mines, both the Perfidious Cascadians and the Mormonhideen have taken to burying larger anti-tank A2AD weaponry. The Cascadians have doubled up some mines, and the Mormons have regularly buried AT mines 3, 4, and even 5 deep.
      2.      General guidelines:
      A.      Solicitation outline:
      In light of the differing requirements for the 2 theaters of war in which the new vehicle is expected to operate, proposals in the form of a field-replaceable A-kit/B-kit solution will be accepted.
      B.      Requirements definitions:
      The requirements in each field are given in 3 levels- Threshold, Objective, and Ideal.
      Threshold is the minimum requirement to be met; failure to reach this standard may greatly disadvantage any proposal.
      Objective is the threshold to be aspired to; it reflects the desires of the People’s Auditory Forces Armored Branch, which would prefer to see all of them met. At least 70% must be met, with bonus points for any more beyond that.
      Ideal specifications are the maximum of which the armored forces dare not even dream. Bonus points will be given to any design meeting or exceeding these specifications.
      C.      All proposals must accommodate the average 1.7m high Californian recruit.
      D.      The order of priorities for the DPRC is as follows:
      a.      Vehicle recoverability.
      b.      Continued fightability.
      c.       Crew survival.
      E.      Permissible weights:
      a.      No individual field-level removable or installable component may exceed 5 tons.
      b.      Despite the best efforts of the Agriculture Command, Californian recruits cannot be expected to lift weights in excess of 25 kg at any time.
      c.       Total vehicle weight must remain within MLC 120 all-up for transport.
      F.      Overall dimensions:
      a.      Length- essentially unrestricted.
      b.      Width- 4m transport width.
                                                                    i.     No more than 4 components requiring a crane may be removed to meet this requirement.
                                                                   ii.     Any removed components must be stowable on top of the vehicle.
      c.       Height- The vehicle must not exceed 3.5m in height overall.
      G.     Technology available:
      a.      Armor:
      The following armor materials are in full production and available for use. Use of a non-standard armor material requires permission from a SEA ORG judge.
      Structural materials:
                                                                    i.     RHA/CHA
      Basic steel armor, 250 BHN. The reference for all weapon penetration figures, good impact properties, fully weldable. Available in thicknesses up to 150mm (RHA) or 300mm (CHA).
      Density- 7.8 g/cm^3.
                                                                   ii.     Aluminum 5083
      More expensive to work with than RHA per weight, middling impact properties, low thermal limits. Excellent stiffness.
       Fully weldable. Available in thicknesses up to 100mm.
      Mass efficiency vs RHA of 1 vs CE, 0.9 vs KE.
      Thickness efficiency vs RHA of 0.33 vs CE, 0.3 vs KE.
      Density- 2.7 g/cm^3 (approx. 1/3 of steel).
      For structural integrity, the following guidelines are recommended:
      For light vehicles (less than 40 tons), not less than 25mm RHA/45mm Aluminum base structure
      For heavy vehicles (70 tons and above), not less than 45mm RHA/80mm Aluminum base structure.
      Intermediate values for intermediate vehicles may be chosen as seen fit.
      Non-structural passive materials:
                                                                  iii.     HHA
      Steel, approximately 500 BHN through-hardened. Approximately twice as effective as RHA against KE and HEAT on a per-weight basis. Not weldable, middling shock properties. Available in thicknesses up to 25mm.
      Density- 7.8g/cm^3.
                                                                  iv.     Glass textolite
      Mass efficiency vs RHA of 2.2 vs CE, 1.64 vs KE.
      Thickness efficiency vs RHA of 0.52 vs CE, 0.39 vs KE.
      Density- 1.85 g/cm^3 (approximately ¼ of steel).
      Non-structural.
                                                                   v.     Fused silica
      Mass efficiency vs RHA of 3.5 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 1 vs CE, 0.28 vs KE.
      Density-2.2g/cm^3 (approximately 1/3.5 of steel).
      Non-structural, requires confinement (being in a metal box) to work.
                                                                  vi.     Fuel
      Mass efficiency vs RHA of 1.3 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 0.14 vs CE, 0.1 vs KE.
      Density-0.82g/cm^3.
                                                                vii.     Assorted stowage/systems
      Mass efficiency vs RHA- 1 vs CE, 0.8 vs KE.
                                                               viii.     Spaced armor
      Requires a face of at least 25mm LOS vs CE, and at least 50mm LOS vs KE.
      Reduces penetration by a factor of 1.1 vs CE or 1.05 vs KE for every 10 cm air gap.
      Spaced armor rules only apply after any standoff surplus to the requirements of a reactive cassette.
      Reactive armor materials:
                                                                  ix.     ERA-light
      A sandwich of 3mm/3mm/3mm steel-explodium-steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                   x.     ERA-heavy
      A sandwich of 15mm steel/3mm explodium/9mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                  xi.     NERA-light
      A sandwich of 6mm steel/6mm rubber/ 6mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
                                                                 xii.     NERA-heavy
      A sandwich of 30mm steel/6m rubber/18mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
      The details of how to calculate armor effectiveness will be detailed in Appendix 1.
      b.      Firepower
                                                                    i.     2A46 equivalent tech- pressure limits, semi-combustible cases, recoil mechanisms and so on are at an equivalent level to that of the USSR in the year 1960.
                                                                   ii.     Limited APFSDS (L:D 15:1)- Spindle sabots or bourelleted sabots, see for example the Soviet BM-20 100mm APFSDS.
                                                                  iii.     Limited tungsten (no more than 100g per shot)
                                                                  iv.     Californian shaped charge technology- 5 CD penetration for high-pressure resistant HEAT, 6 CD for low pressure/ precision formed HEAT.
                                                                   v.     The general issue GPMG for the People’s Auditory Forces is the PKM. The standard HMG is the DShK.
      c.       Mobility
                                                                    i.     Engines tech level:
      1.      MB 838 (830 HP)
      2.      AVDS-1790-5A (908 HP)
      3.      Kharkov 5TD (600 HP)
                                                                   ii.     Power density should be based on the above engines. Dimensions are available online, pay attention to cooling of 1 and 3 (water cooled).
                                                                  iii.     Power output broadly scales with volume, as does weight. Trying to extract more power from the same size may come at the cost of reliability (and in the case of the 5TD, it isn’t all that reliable in the first place).
                                                                  iv.     There is nothing inherently wrong with opposed piston or 2-stroke engines if done right.
      d.      Electronics
                                                                    i.     LRFs- unavailable
                                                                   ii.     Thermals-unavailable
                                                                  iii.     I^2- limited
      3.      Operational Requirements.
      The requirements are detailed in the appended spreadsheet.
      4.      Submission protocols.
      Submission protocols and methods will be established in a follow-on post, nearer to the relevant time.
       
      Appendix 1- armor calculation
      Appendix 2- operational requirements
      Addendum 1 - more armor details
      Good luck, and may Hubbard guide your way to enlightenment!
    • By Sturgeon
      @Toxn
      @Dominus Dolorem
      @Lord_James
      @A. T. Mahan
      @delete013
      @Sten
      @Xoon
      @Curly_
      @N-L-M
      @Sturgeon
       
      detailed below is the expected format of the final submission.
      The date is set as Saturday the 24th of July at 23:59 CST.
      Again, incomplete designs may be submitted as they are and will be judged as seen fit.

      PLEASE REMEMBER ALL ENTRIES MUST BE SUBMITTED IN USC ONLY
       
       
      FINAL SUBMISSION:
      Vehicle Designation and name
       
      [insert 3-projection (front, top, side) and isometric render of vehicle here]
       
      Table of basic statistics:
      Parameter
      Value
      Mass, combat (armor)
       
      Length, combat (transport)
       
      Width, combat (transport)
       
      Height, combat (transport)
       
      Ground Pressure, zero penetration
       
      Estimated Speed
       
      Estimated range
       
      Crew, number (roles)
       
      Main armament, caliber (ammo count ready/stowed)
       
      Secondary armament, caliber (ammo count ready/stowed)
       
       
      Vehicle designer’s notes: explain the thought process behind the design of the vehicle, ideas, and the development process from the designer’s point of view.
      Vehicle feature list:
      Mobility:
      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.
      2.     Engine- type, displacement, rated power, cooling, neat features.
      3.     Transmission - type, arrangement, neat features.
      4.     Fuel - Type, volume available, stowage location, estimated range, neat features.
      5.     Other neat features in the engine bay.
      6.     Suspension - Type, Travel, ground clearance, neat features.
      Survivability:
      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.
      2.     Link to Appendix 2 - armor array details.
      3.     Non-specified survivability features and other neat tricks - low profile, gun depression, instant smoke, cunning internal arrangement, and the like.
      Firepower:
      A.    Weapons:
      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.
      2.     Main Weapon-
      a.      Type
      b.      Caliber
      c.      ammunition types and performance (short)
      d.     Ammo stowage arrangement- numbers ready and total, features.
      e.      FCS - relevant systems, relevant sights for operating the weapon and so on.
      f.      Neat features.
      3.     Secondary weapon - Similar format to primary. Tertiary and further weapons- likewise.
      4.     Link to Appendix 3 - Weapon system magic. This is where you explain how all the special tricks related to the armament that aren’t obviously available using 1960s tech work, and expand to your heart’s content on estimated performance and how these estimates were reached.
      B.    Optics:
      1.     Primary gunsight - type, associated trickery.
      2.     Likewise for any and all other optics systems installed, in no particular order.
      C.    FCS:
      1.     List of component systems, their purpose and the basic system architecture.
      2.     Link to Appendix 3 - weapon system magic, if you have long explanations about the workings of the system.
      Fightability:
      1.     List vehicle features which improve its fightability and useability.
      Additonal Features:
      Feel free to list more features as you see fit, in more categories.
      Free expression zone: Let out a big yeehaw to impress the world with your design swagger! Kindly spoiler this section if it’s very long.
       
       Example for filling in Appendix 1
       Example for filling in Appendix 2
       Example for filling in Appendix 3

      GOOD LUCK!
    • By Monochromelody
      IDF had kept about 100 Tiran-6/T-62s since 1973, and remain service until 1990s. 
       
      I wonder if there's any modification on Tiran-6, like changing the powerpack into 8V71T+XTG-411, adapting steering wheel. 
       
      I also heard that British ROF had produce a batch of 115mm barrel for IDF, while MECAR or NEXTER produced high-performance APFSDS for 115mm gun. Did IDF really use these barrels for original barrel replacement? 
       
      And about protection, did IDF put Blazer ERA on Tiran-6? Or they use more advanced APS like Trophy? 
       
      Thank you. 
×
×
  • Create New...