Jump to content
Sturgeon's House

The Preliminary T-72ology Thread


Collimatrix
 Share

Recommended Posts

Shortly after Jeeps_Guns_Tanks started his substantial foray into documenting the development and variants of the M4, I joked on teamspeak with Wargaming's The_Warhawk that the next thing he ought to do was a similar post on the T-72.

 

Haha.  I joke.  I am funny man.

 

The production history of the T-72 is enormously complicated.  Tens of thousands were produced; it is probably the fourth most produced tank ever after the T-54/55, T-34 and M4 sherman.

 

For being such an ubiquitous vehicle, it's frustrating to find information in English-language sources on the T-72.  Part of this is residual bad information from the Cold War era when all NATO had to go on were blurry photos from May Day parades:

 

maxresdefault.jpg

 

As with Soviet aircraft, NATO could only assign designations to obviously externally different versions of the vehicle.  However, they were not necessarily aware of internal changes, nor were they aware which changes were post-production modifications and which ones were new factory variants of the vehicle.  The NATO designations do not, therefore, necessarily line up with the Soviet designations.  Between different models of T-72 there are large differences in armor protection and fire control systems.  This is why anyone arguing T-72 vs. X has completely missed the point; you need to specify which variant of T-72.  There are large differences between them!

 

Another issue, and one which remains contentious to this day, is the relation between the T-64, T-72 and T-80 in the Soviet Army lineup.  This article helps explain the political wrangling which led to the logistically bizarre situation of three very similar tanks being in frontline service simultaneously, but the article is extremely biased as it comes from a high-ranking member of the Ural plant that designed and built the T-72.  Soviet tank experts still disagree on this; read this if you have some popcorn handy.  Talking points from the Kharkov side seem to be that T-64 was a more refined, advanced design and that T-72 was cheap filler, while Ural fans tend to hold that T-64 was an unreliable mechanical prima donna and T-72 a mechanically sound, mass-producible design.

 

So, if anyone would like to help make sense of this vehicle, feel free to post away.  I am particularly interested in:

 

-What armor arrays the different T-72 variants use.  Diagrams, dates of introduction, and whether the array is factory-produced or a field upgrade of existing armor are pertinent questions.

 

-Details of the fire control system.  One of the Kharkov talking points is that for most of the time in service, T-64 had a more advanced fire control system than contemporary T-72 variants.  Is this true?  What were the various fire control systems in the T-64 and T-72, and what were there dates of introduction?  I am particularly curious when Soviet tanks got gun-follows-sight FCS.

 

-Export variants and variants produced outside the Soviet Union.  How do they stack up?  Exactly what variant(s) of T-72 were the Iraqis using in 1991?

-WTF is up with the T-72's transmission?  How does it steer and why is its reverse speed so pathetically low?

 

 

Link to comment
Share on other sites

I am in the fortunate position of recognizing the need for all 3, maybe even 4 (object 187)

But that's probably becuase of my small slavic brain can't bring itself to criticize a Soviet design

Not even the t-62

Ha, enough with my shitty jokes, nice post

 

When thinking of the T-64/72/80, and i know i use this analogy a fucking lot, but think of them as the holy trinity

 

In most mainstream Christianity, you have the father, son, and holy spirit, all three being physical/spiritual representations of god, all three being no less god than the last, kinda like water, steam, and ice. 

 

Just like all three represent god, the T-64/72/80 all represent the need to get a 125mm auto-loading gun unto the field for purposes of liberating the workers of the world

 

in some way or the other, they are as intertwined as the last and all as equally relevant in Soviet MBT design 

Link to comment
Share on other sites

1os0r3y.jpg

Hey, I thought I was the official poster of Jim Warford ARMOR articles on the internet!  

 

As to the model kit EE posted of the T-74, that tank was not nearly as cool as the T-70.  The T-70 got all sorts of press in Western intel reports back in the day.  In fact, I can point to some early 80's era Armor issues where a young Lt. Jim Warford is arguing about the T-70 with a young civilian Soviet tank expert named Steven Zaloga.  

Link to comment
Share on other sites

T-70... the light WWII tank?

 

apparently him and Steven Zagola had a huge interest in the T-70 light tank

 

now that passage in some Zagola book about a Abrams squadron devastating attacking T-70s finally makes sense 

Link to comment
Share on other sites

Maybe we should add here T-72 timeline and compare it to NATO tanks timeline.

I'd love to see the result of a real fight between NATO doctrine and WARPAC Doctrine.  From what I've been given to understand, given proper training time, Soviet era Combined Arms doctrine works pretty decently against NATO forces from the OPFOR exercises at IIRC, Fort Hood.

Link to comment
Share on other sites

Would you mind inviting him to this forum?  That would be lovely.

Of course.

I believe that some Iraqi T-72's were not downgraded, rather older models as noted. However, many of them (namely the ones mistaken as the "Asad Babil") not only lacked basic features all soviet models did, but were also made out of just steel, had no IR filter on the light etc. It's hard not to call that a downgrade.

Link to comment
Share on other sites

Jeez, don't you guys know anything about cold war soviet tanks? :P  The T-70 MBT!   It totally existed, at least in the minds of western intelligence experts.  It looked almost exactly like a very early T-64 but it was somehow different.  Much like bigfoot, it only existed in blurry, hard to see pictures.  

 

comparative+characteristics+of+Main+Batt

 

I wonder if anyone came up with a unit dedicated to leaking blurry pictures of things to Americans.

Link to comment
Share on other sites

I'd love to see the result of a real fight between NATO doctrine and WARPAC Doctrine.  From what I've been given to understand, given proper training time, Soviet era Combined Arms doctrine works pretty decently against NATO forces from the OPFOR exercises at IIRC, Fort Hood.

 

Something like Operation Barborrossa or Operation Begration 2.0 for the Soviet's being on the attackers side

 

HATO didnt stockpile nukes because they thought they would win in Europe 

Link to comment
Share on other sites

Having looked at T-90MS (or SM, as you prefer) it seems to have retained the carousel auto-loader inside the turret with additional main armament rounds stowed in the bustle under blowout panels.  The traditional Western view would have gone for the autoloader in the bustle and the other rounds (where?) -a la Leclerc?

 

The Ukrainians seem to have experimented with a bustle loader on the Yatagan, but that was for a NATO 120mm gun, perhaps with a French auto-loader(?)

 

Can anyone tell me whether the Russians ever seriously looked at an autoloader with the ammunition in the bustle for the 125mm gun.  I realise the two piece ammunition might be a problem, but was any serious consideration given and, if so, why was it not proceeded with? 

 

Even in just export market terms, it would overcome the criticism that the internal ammunition stowage on the T-72 and derivatives (and T-64 and derivatives) was an additional vulnerability.  Which leads to comment on whether your ammunition stowage matters a damn if you are penetrated by a modern FSDS or HEAT round?

 

Is this the area to discuss this whole ammunition stowage as part of the layered protection concept issue?

 

Cheers

B

Link to comment
Share on other sites

Bill, in Soviet tanks thread i posted a picture of 3D model of Burlak turret and several photos of T-72 test vehicle with Burlak turret prototype. This turret had a bustle autoloader for 2A46M series of tank guns. You can search it for more info, i am posting from mobie device.

Link to comment
Share on other sites

 

Can anyone tell me whether the Russians ever seriously looked at an autoloader with the ammunition in the bustle for the 125mm gun.  I realise the two piece ammunition might be a problem, but was any serious consideration given and, if so, why was it not proceeded with? 

 

Even in just export market terms, it would overcome the criticism that the internal ammunition stowage on the T-72 and derivatives (and T-64 and derivatives) was an additional vulnerability.  Which leads to comment on whether your ammunition stowage matters a damn if you are penetrated by a modern FSDS or HEAT round?

 

Is this the area to discuss this whole ammunition stowage as part of the layered protection concept issue?

 

Cheers

B

They did, and more than once... Object-640 used a bustle-loader in combination with a 2A46M, though the project went to bust with the bankrupting of Omsktransmash. 

 

Burlak turret, intended for the T-72, also used a bustle loader. The reason for not actually buying them, I don't know...but as a whole it would have been very expensive, and while it used a bustle loader, it also retained the carousel in the hull. 

 

The "additional vulnerability" came more from exposed rounds, rather than the idea of hull-storage itself. T-64/80 used a vertical propellant carousel, that left that propellant exposed. Because it was vertical AND exposed, a decent number of penetrations would lead to a cook off. T-72's use a horizontal carousel, that isn't exposed...however, rounds *can* be stored along the inside of the crew compartment, where they are exposed. That is where the problem came from, *exposing* propellant. 

 

T-90MS fixes this problem by adding more armor to the carousel, and also by putting excess ammunition in the bustle instead of the crew compartment. 

 

Bustle-loaders are very safe for the crew, but they also provide little, if no protection for the rounds. This is one area where hull storage actually makes sense. 

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Content

    • By N-L-M
      Restricted: for Operating Thetan Eyes Only
      By order of Her Gracious and Serene Majesty Queen Diane Feinstein the VIII
      The Dianetic People’s Republic of California
      Anno Domini 2250
      SUBJ: RFP for new battle tank
       
      1.      Background.
      As part of the War of 2248 against the Perfidious Cascadians, great deficiencies were discovered in the Heavy tank DF-1. As detailed in report [REDACTED], the DF-1 was quite simply no match for the advanced weaponry developed in secret by the Cascadian entity. Likewise, the DF-1 has fared poorly in the fighting against the heretical Mormonhideen, who have developed many improvised weapons capable of defeating the armor on this vehicle, as detailed in report [REDACTED]. The Extended War on the Eastern Front has stalled for want of sufficient survivable firepower to push back the Mormon menace beyond the Colorado River south of the Vegas Crater.
      The design team responsible for the abject failure that was the DF-1 have been liquidated, which however has not solved the deficiencies of the existing vehicle in service. Therefore, a new vehicle is required, to meet the requirements of the People’s Auditory Forces to keep the dream of our lord and prophet alive.
       
       
      Over the past decade, the following threats have presented themselves:
      A.      The Cascadian M-2239 “Norman” MBT and M-8 light tank
      Despite being approximately the same size, these 2 vehicles seem to share no common components, not even the primary armament! Curiously, it appears that the lone 120mm SPG specimen recovered shares design features with the M-8, despite being made out of steel and not aluminum like the light tank. (based on captured specimens from the battle of Crater Lake, detailed in report [REDACTED]).
      Both tanks are armed with high velocity guns.
      B.      The Cascadian BGM-1A/1B/1C/1D ATGM
      Fitted on a limited number of tank destroyers, several attack helicopters, and (to an extent) man-portable, this missile system is the primary Cascadian anti-armor weapon other than their armored forces. Intelligence suggests that a SACLOS version (BGM-1C) is in LRIP, with rumors of a beam-riding version (BGM-1D) being developed.
      Both warheads penetrate approximately 6 cone diameters.
      C.      Deseret tandem ATR-4 series
      Inspired by the Soviet 60/105mm tandem warhead system from the late 80s, the Mormon nation has manufactured a family of 2”/4” tandem HEAT warheads, launched from expendable short-range tube launchers, dedicated AT RRs, and even used as the payload of the JS-1 MCLOS vehicle/man-portable ATGM.
      Both warheads penetrate approximately 5 cone diameters.
      D.      Cascadian HEDP 90mm rocket
      While not a particularly impressive AT weapon, being of only middling diameter and a single shaped charge, the sheer proliferation of this device has rendered it a major threat to tanks, as well as lighter vehicles. This weapon is available in large numbers in Cascadian infantry squads as “pocket artillery”, and there are reports of captured stocks being used by the Mormonhideen.
      Warhead penetrates approximately 4 cone diameters.
      E.      Deseret 40mm AC/ Cascadian 35mm AC
      These autocannon share broadly similar AP performance, and are considered a likely threat for the foreseeable future, on Deseret armored cars, Cascadian tank destroyers, and likely also future IFVs.
      F.      IEDs
      In light of the known resistance of tanks to standard 10kg anti-tank mines, both the Perfidious Cascadians and the Mormonhideen have taken to burying larger anti-tank A2AD weaponry. The Cascadians have doubled up some mines, and the Mormons have regularly buried AT mines 3, 4, and even 5 deep.
      2.      General guidelines:
      A.      Solicitation outline:
      In light of the differing requirements for the 2 theaters of war in which the new vehicle is expected to operate, proposals in the form of a field-replaceable A-kit/B-kit solution will be accepted.
      B.      Requirements definitions:
      The requirements in each field are given in 3 levels- Threshold, Objective, and Ideal.
      Threshold is the minimum requirement to be met; failure to reach this standard may greatly disadvantage any proposal.
      Objective is the threshold to be aspired to; it reflects the desires of the People’s Auditory Forces Armored Branch, which would prefer to see all of them met. At least 70% must be met, with bonus points for any more beyond that.
      Ideal specifications are the maximum of which the armored forces dare not even dream. Bonus points will be given to any design meeting or exceeding these specifications.
      C.      All proposals must accommodate the average 1.7m high Californian recruit.
      D.      The order of priorities for the DPRC is as follows:
      a.      Vehicle recoverability.
      b.      Continued fightability.
      c.       Crew survival.
      E.      Permissible weights:
      a.      No individual field-level removable or installable component may exceed 5 tons.
      b.      Despite the best efforts of the Agriculture Command, Californian recruits cannot be expected to lift weights in excess of 25 kg at any time.
      c.       Total vehicle weight must remain within MLC 120 all-up for transport.
      F.      Overall dimensions:
      a.      Length- essentially unrestricted.
      b.      Width- 4m transport width.
                                                                    i.     No more than 4 components requiring a crane may be removed to meet this requirement.
                                                                   ii.     Any removed components must be stowable on top of the vehicle.
      c.       Height- The vehicle must not exceed 3.5m in height overall.
      G.     Technology available:
      a.      Armor:
      The following armor materials are in full production and available for use. Use of a non-standard armor material requires permission from a SEA ORG judge.
      Structural materials:
                                                                    i.     RHA/CHA
      Basic steel armor, 250 BHN. The reference for all weapon penetration figures, good impact properties, fully weldable. Available in thicknesses up to 150mm (RHA) or 300mm (CHA).
      Density- 7.8 g/cm^3.
                                                                   ii.     Aluminum 5083
      More expensive to work with than RHA per weight, middling impact properties, low thermal limits. Excellent stiffness.
       Fully weldable. Available in thicknesses up to 100mm.
      Mass efficiency vs RHA of 1 vs CE, 0.9 vs KE.
      Thickness efficiency vs RHA of 0.33 vs CE, 0.3 vs KE.
      Density- 2.7 g/cm^3 (approx. 1/3 of steel).
      For structural integrity, the following guidelines are recommended:
      For light vehicles (less than 40 tons), not less than 25mm RHA/45mm Aluminum base structure
      For heavy vehicles (70 tons and above), not less than 45mm RHA/80mm Aluminum base structure.
      Intermediate values for intermediate vehicles may be chosen as seen fit.
      Non-structural passive materials:
                                                                  iii.     HHA
      Steel, approximately 500 BHN through-hardened. Approximately twice as effective as RHA against KE and HEAT on a per-weight basis. Not weldable, middling shock properties. Available in thicknesses up to 25mm.
      Density- 7.8g/cm^3.
                                                                  iv.     Glass textolite
      Mass efficiency vs RHA of 2.2 vs CE, 1.64 vs KE.
      Thickness efficiency vs RHA of 0.52 vs CE, 0.39 vs KE.
      Density- 1.85 g/cm^3 (approximately ¼ of steel).
      Non-structural.
                                                                   v.     Fused silica
      Mass efficiency vs RHA of 3.5 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 1 vs CE, 0.28 vs KE.
      Density-2.2g/cm^3 (approximately 1/3.5 of steel).
      Non-structural, requires confinement (being in a metal box) to work.
                                                                  vi.     Fuel
      Mass efficiency vs RHA of 1.3 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 0.14 vs CE, 0.1 vs KE.
      Density-0.82g/cm^3.
                                                                vii.     Assorted stowage/systems
      Mass efficiency vs RHA- 1 vs CE, 0.8 vs KE.
                                                               viii.     Spaced armor
      Requires a face of at least 25mm LOS vs CE, and at least 50mm LOS vs KE.
      Reduces penetration by a factor of 1.1 vs CE or 1.05 vs KE for every 10 cm air gap.
      Spaced armor rules only apply after any standoff surplus to the requirements of a reactive cassette.
      Reactive armor materials:
                                                                  ix.     ERA-light
      A sandwich of 3mm/3mm/3mm steel-explodium-steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                   x.     ERA-heavy
      A sandwich of 15mm steel/3mm explodium/9mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                  xi.     NERA-light
      A sandwich of 6mm steel/6mm rubber/ 6mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
                                                                 xii.     NERA-heavy
      A sandwich of 30mm steel/6m rubber/18mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
      The details of how to calculate armor effectiveness will be detailed in Appendix 1.
      b.      Firepower
                                                                    i.     2A46 equivalent tech- pressure limits, semi-combustible cases, recoil mechanisms and so on are at an equivalent level to that of the USSR in the year 1960.
                                                                   ii.     Limited APFSDS (L:D 15:1)- Spindle sabots or bourelleted sabots, see for example the Soviet BM-20 100mm APFSDS.
                                                                  iii.     Limited tungsten (no more than 100g per shot)
                                                                  iv.     Californian shaped charge technology- 5 CD penetration for high-pressure resistant HEAT, 6 CD for low pressure/ precision formed HEAT.
                                                                   v.     The general issue GPMG for the People’s Auditory Forces is the PKM. The standard HMG is the DShK.
      c.       Mobility
                                                                    i.     Engines tech level:
      1.      MB 838 (830 HP)
      2.      AVDS-1790-5A (908 HP)
      3.      Kharkov 5TD (600 HP)
                                                                   ii.     Power density should be based on the above engines. Dimensions are available online, pay attention to cooling of 1 and 3 (water cooled).
                                                                  iii.     Power output broadly scales with volume, as does weight. Trying to extract more power from the same size may come at the cost of reliability (and in the case of the 5TD, it isn’t all that reliable in the first place).
                                                                  iv.     There is nothing inherently wrong with opposed piston or 2-stroke engines if done right.
      d.      Electronics
                                                                    i.     LRFs- unavailable
                                                                   ii.     Thermals-unavailable
                                                                  iii.     I^2- limited
      3.      Operational Requirements.
      The requirements are detailed in the appended spreadsheet.
      4.      Submission protocols.
      Submission protocols and methods will be established in a follow-on post, nearer to the relevant time.
       
      Appendix 1- armor calculation
      Appendix 2- operational requirements
      Addendum 1 - more armor details
      Good luck, and may Hubbard guide your way to enlightenment!
    • By T___A
      This shall be the general thread for all things soviet tanks. I shall start by posting an article I just wrote for my blog. I would recommend Archive Awarness which is an excellent blog about Soviet tanks and their experiences with other nation's tanks.
    • By Monochromelody
      IDF had kept about 100 Tiran-6/T-62s since 1973, and remain service until 1990s. 
       
      I wonder if there's any modification on Tiran-6, like changing the powerpack into 8V71T+XTG-411, adapting steering wheel. 
       
      I also heard that British ROF had produce a batch of 115mm barrel for IDF, while MECAR or NEXTER produced high-performance APFSDS for 115mm gun. Did IDF really use these barrels for original barrel replacement? 
       
      And about protection, did IDF put Blazer ERA on Tiran-6? Or they use more advanced APS like Trophy? 
       
      Thank you. 
    • By Sturgeon
      The LORD was with the men of Deseret. They took possession of the hill country, but they were unable to drive the people from the plains, because they had chariots of steel.
      —The Book of Latter Day Saints, Ch 8, vs. 3:10, circa 25th Century CE
       
      BULLETIN: ALL INDUSTRIAL-MECHANICAL CONCERNS
       
      SOLICITATION FOR ALL-TERRAIN BATTLE TANK
       
      The Provisional Government of the Lone Free State of Texas and The Great Plains issues the following solicitation for a new All-Terrain Battle Tank. The vehicle will be the main line ground combat asset of the Lone Free State Rangers, and the Texas Free State Patrol, and will replace the ageing G-12 Scout Truck, and fill the role of the cancelled G-42 Scout Truck. The All-Terrain Battle Tank (ATBT) will be required to counter the new Californian and Cascadian vehicles and weapons which our intelligence indicates are being used in the western coast of the continent. Please see the attached sheet for a full list of solicitation requirements.
       

       
      Submissions will be accepted in USC only.
       
       
      Supplementary Out of Canon Information:
       
       
      I.     Technology available:
      a.      Armor:
      The following armor materials are in full production and available for use. Use of a non-standard armor material requires permission from a judge.
      Structural materials:
                                                                    i.     RHA/CHA
      Basic steel armor, 360 BHN. The reference for all weapon penetration figures, good impact properties, fully weldable. Available in thicknesses up to 4 inches (RHA) 8 inches (CHA). 
      Density- 0.28 lb/in^3.
                                                                   ii.     Aluminum 5083
      More expensive to work with than RHA per weight, middling impact properties, low thermal limits. Excellent stiffness.
       Fully weldable. Available in thicknesses up to 4 inches.
      Mass efficiency vs RHA of 1 vs CE, 0.9 vs KE.
      Thickness efficiency vs RHA of 0.33 vs CE, 0.3 vs KE.
      Density- 0.1 lb/in^3 (approx. 1/3 of steel).
      For structural integrity, the following guidelines are recommended:
      For heavy vehicles (30-40 tons), not less than 1 in RHA/1.75 in Aluminum base structure
      For medium-light vehicles (<25 tons), not less than 0.5 in RHA/1 in Aluminum base structure
      Intermediate values for intermediate vehicles may be chosen as seen fit.
      Non-structural passive materials:
                                                                  iii.     HHA
      Steel, approximately 500 BHN through-hardened. Approximately 1.5x as effective as RHA against KE and HEAT on a per-weight basis. Not weldable, middling shock properties. Available in thicknesses up to 1 inch.
      Density- 0.28 lb/in^3
                                                                  iv.     Fuel
      Mass efficiency vs RHA of 1.3 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 0.14 vs CE, 0.1 vs KE.
      Density-0.03 lb/in^3.
                                                                v.     Assorted stowage/systems
      Mass efficiency vs RHA- 1 vs CE, 0.8 vs KE.
                                                               vi.     Spaced armor
      Requires a face of at least 1 inch LOS vs CE, and at least 0.75 caliber LOS vs fullbore AP KE.
      Reduces penetration by a factor of 1.1 vs CE or 1.05 vs KE for every 4 inchair gap.
      Spaced armor rules only apply after any standoff surplus to the requirements of a reactive cassette.
      Reactive armor materials:
                                                                  vii.     ERA
      A sandwich of 0.125in/0.125in/0.125in steel-explodium-steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 2 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                  viii.     NERA
      A sandwich of 0.25in steel/0.25in rubber/0.25in steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
      The details of how to calculate armor effectiveness will be detailed in Appendix 1.
      b.      Firepower
                                                                    i.     Bofors 57mm (reference weapon) - 85,000 PSI PMax/70,000 PSI Peak Operating Pressure, high quality steel cases, recoil mechanisms and so on are at an equivalent level to that of the USA in the year 1960.
                                                                   ii.     No APFSDS currently in use, experimental weapons only - Spindle sabots or bourelleted sabots, see for example the Soviet BM-20 100mm APFSDS.
                                                                  iii.     Tungsten is available for tooling but not formable into long rod penetrators. It is available for penetrators up to 6 calibers L:D.
                                                                  iv.     Texan shaped charge technology - 4 CD penetration for high-pressure resistant HEAT, 5 CD for low pressure/ precision formed HEAT.
                                                                   v.     The subsidy-approved GPMG for the Lone Free State of Texas has the same form factor as the M240, but with switchable feed direction.. The standard HMG has the same form factor as the Kord, but with switchable feed direction.
      c.       Mobility
                                                                    i.     Engines tech level:
      1.      MB 838 (830 HP)
      2.      AVDS-1790-5A (908 HP)
      3.      Kharkov 5TD (600 HP)
      4.    Detroit Diesel 8V92 (400 HP)
      5.    Detroit Diesel 6V53 (200 HP)
                                                                   ii.     Power density should be based on the above engines. Dimensions are available online, pay attention to cooling of 1 and 3 (water cooled).
                                                                  iii.     Power output broadly scales with volume, as does weight. Trying to extract more power from the same size may come at the cost of reliability (and in the case of the 5TD, it isn’t all that reliable in the first place).
                                                                  iv.     There is nothing inherently wrong with opposed piston or 2-stroke engines if done right.
      d.      Electronics
                                                                    i.     LRFs- unavailable
                                                                   ii.     Thermals-unavailable
                                                                  iii.     I^2- Gen 2 maximum
                                                                  vi.     Texas cannot mass produce microprocessors or integrated circuits
                                                                 vii.    Really early transistors only (e.g., transistor radio)
                                                                viii.    While it is known states exist with more advanced computer technology, the import of such systems are barred by the east coast states who do not approve of their use by militaristic entities.
       
      Armor calculation appendix.
       
      SHEET 1 Armor defeat calculator 4in-54 1200 yd
       
      SHEET 2 Armor defeat calculator 4in-54 2000 yd
       
      SHEET 3 Armor defeat calculator 6in HEAT
       
      Range calculator
       
×
×
  • Create New...