Jump to content
Sturgeon's House

Recommended Posts

This fucking light tank... Here's the Sandy Mk. 3:
 

YopNTQO.png

 

The elliptical turret is much better protected... But also heavier. Weight is up to 22.6 tons gross, more than double what the Sandy was originally supposed to be. Since the original airdroppable concept seems unachievable now, I guess the Sandy is better suited as a tank for fighting Deseret? But I think the Donward can do that too, so I'm not sure there's much point to this anymore. The biggest problem the Sandy has right now is power: It was designed to fit an engine roughly equivalent to a Detroit 6V53T, which is a 275-310 hp engine or so, but at nearly 23t that isn't nearly enough power. I'm currently looking into flat engines that might work, hoping to cram at least 550 hp into the thing. If I can't do that, I'll have to make a totally new hull. Ugh.

Speaking of a bigger hull, I figured I'd see how this looked since le pancake turret is pretty well armored:

avvIEHr.png

 

It looks... Special. Doesn't seem to be much merit to it, either, since it's nearly as heavy as the original turret version. This turret does have me interested in a low weight medium, though, something that would come out equivalent to a T-55.

Link to comment
Share on other sites

On 8/16/2018 at 8:54 PM, Toxn said:

Primary entry, SPG and SPAAG to follow:

 

M8 “Elk”

 

mhjYK82.jpg

 

Length: 6.6m (hull), 8.6m (total)

Width: 2.65m (hull), 3.25m (total)

Height: 2.7m

Weight: 40/21 t (empty weight)

Crew: 4 (commander, gunner, loader, driver)

 

Armour:

  • 100/25mm (upper hull front)
  • 100/25mm (lower hull front)
  • 65/25mm (hull side forward)
  • 25/15mm (hull side rear)
  • 25/15mm (hull rear)
  • 25/15mm (hull roof)
  • 25/15mm (hull floor)
  • 100/25mm (turret front)
  • 100/15mm (turret side forward)
  • 65/15mm (turret side rear)
  • 25/15mm (turret rear)
  • 100/25mm (mantlet)
  • 25/15mm (turret roof)

 

Weapons:

  • 80mm L/45 cannon:

               - APHE: 7.1kg, 820m/s, ~130mm RHA penetration (90’, 500m)

               - APCR: 4.3kg, 1045m/s, ~160mm RHA penetration (90’, 500m)

               - HEAT: 4.8kg, 500m/s, ~90mm RHA penetration (90’, any range)

               - HE: 6.1 kg, 500m/s

  • Browning M2 heavy machine gun (turret roof)
  • M240 machine gun (coaxial)

 

Engine: 18L, 450 HP (340 kW) V8 petrol engine (Ford GAA derivative)

Power/weight: 7.6 kW/t or 13.6 kW/t tonne

Max speed (road): 45km/h or 60km/h

Max sustained speed (offroad): 30km/h or 40km/h

Range: 300km/550km

 

XOc9Y47.jpg

frRRUDt.jpg

 

Description

 

The M8 “Elk” was the result of a proactive design process intended to provide a ‘universal’ tank optimised for fighting a defensive war against Californian forces and serving in a more mobile role in the Oregon/Idaho sector. The design is also intended to have reserve capacity for upgrades as they become available.

The core of the vehicle is a simple hull with a clean, sloped front and a large engine bay in the rear separated from the crew compartment by a 25mm or 15mm (depending on the version) armoured bulkhead. The armour layout emphasises frontal engagements and crew protection, with the forward side armour (covering the crew compartment) being significantly thicker then the rear side armour.

 

The M8 is offered in two variants: a 45t ‘medium’ version and a 25t ‘light’ version. The medium version is designed to resist current-generation heavy anti-tank weapons across the hull front and turret frontal arc from any distance, with current generation medium anti-tank weapons being resisted across a 45 degree arc covering the crew compartment. The medium is expected to remain well protected against medium anti-tank weapons for the foreseeable future, and is expected to resist heavy anti-tank weapons across the hull front and turret front at ranges beyond 1000m. The light version sacrifices nearly all of its armour in favour of lower weight, retaining only 25mm plate to cover the frontal arc and crew compartment. This is, however, expected to provide protection against 20 and 30mm Deseret weapons at combat ranges. Some of this lightening is achieved through the use of aluminium components (most notably the road wheels) where possible. Although much less well protected than its medium cousin, the light version gains very good cross-country mobility and greater range. It also retains the excellent 80mm gun used by the medium, which is expected to remain effective against light and medium vehicles for the foreseeable future. The hull and turret are both of welded constuction, with castings only being used for a few components (most notably the gun mount and mantlet).

 

The engine bay is designed to facilitate service and repair, and has large rear doors for access to the engine and transmission. The engine and transmission, in turn, are mounted using a rail system so that they can be easily pulled. The radiators and fans are mounted in hinged doors on the hull roof, which also double as access points for service. The emphasis on ease of maintenance continues to the suspension system, which is a widened derivative of the historical HVSS designs used on the pre-war Sherman series of tanks. Each suspension unit mounts to hardpoints which protrude a bit below the hull proper, resulting in a very respectable 50cm of ground clearance. Due to the forward-heavy nature of the tank, the suspension units on the medium model are not evenly spaced. Instead the middle unit is positioned somewhat closer to the front unit than the rear unit. The engine, a 450-500 HP design based on the pre-war Ford GAA, drives vehicle through a rear sprocket. The medium and light versions use different transmission designs; with the medium’s being a more robust mechanical unit with a lower gear ratio, while the light uses a hydromatic unit based on that of the M24. Both vehicles are equipped with multiple reverse gears to facilitate shoot-and-reposition tactics.

 

The turret is roomy thanks to a large 1.8m turret ring, which is also expected to facilitate upgrade programs going forwards. It’s shape is six-sided, somewhat sloped, and contains generously-sized hatches for the crew. The turret is equipped with a full basket. The commander’s hatch is equipped with multiple vision blocks to provide good visibility while buttoned up. The commander and gunner also have access to periscopes (based on the M10 design) for the purposes of target acquisition and rough lay-in. The gunner’s periscope is selectable for 3X and 6X magnification, and has various reticles for the main ammunition types. A telescopic sight, based on the M70-series sights, is provided for fine lay-in. An azimuth indicator and gunner’s quadrant is provided for ranged fire missions. The rear of the turret houses the radio set – a new transistor design based on the pre-war SCR-500 series. This set includes an intercom system, and is expected to be less maintenance-intensive than our existing sets. The rear side sponson contains a small telephone, linked to the intercom system, to allow infantry to communicate with the crew.

 

The 80mm main gun has merely average elevation and depression: +37 to -8 degrees. This is something of a flaw, and may need to be corrected on future models of the vehicle. The turret drive is electric, and manages a full rotation in around 15 seconds. The electric unit does not allow for very precise movement of the turret at present, so the gunner’s handwheel is necessary for fine adjustment. In terms of power, the main gun is able to penetrate any commonly-encountered armoured vehicle from the front at combat ranges using the present APHE and APCR shells. It is expected to remain viable against most light and medium vehicles for the foreseeable future. The gun also sports a very good HE shell, which is fired using a low-velocity charge. The coaxial M240 machine gun provides a reliable level of firepower for anti-infantry work, while the roof-mounted M2 heavy machine gun provides a useful level of auxiliary firepower against soft-skinned vehicles, as well as a rudimentary anti-aircraft capability.

 

Overall the M8 offers good firepower, good protection (in the medium variant, at least) and decent mobility. It also offers a platform with significant margin for further development.

 

Acknowledgements

  • Jeeps (the Sherman site is freaking goldmine)
  • Various Sketchup users (especially Sketchy@Best, Stefan F., M L. and zdanwoj)
  • Whoever came up with that Tank Designer spreadsheet that Sturgeon posted

 

WxA75nk.jpg

C6u5cGW.jpg

Edit: I'm going to ask the Judges to use their imagination in regard to towing eyelets and radio aerials. Because I completely forgot to put those in.

XM8A1

 

f6HZlnn.jpg

 

Length: 6.6m (hull), 10.5m (total)

Width: 2.65m (hull), 3.25m (total)

Height: 2.7m

Weight: 43t (combat weight)

Crew: 4 (commander, gunner, loader, driver)

 

Armour:

  • 100mm (upper hull front)
  • 100mm (lower hull front)
  • 65mm (hull side forward)
  • 25mm (hull side rear)
  • 25mm (hull rear)
  • 25mm (hull roof)
  • 25mm (hull floor)
  • 100mm (turret front)
  • 100mm (turret side forward)
  • 65mm (turret side rear)
  • 25mm (turret rear)
  • 100mm (mantlet)
  • 25mm (turret roof)

 

Weapons:

  • 100mm L/53 cannon:

               - APHE: 15.8kg, 900m/s, ~210mm RHA penetration (90’, 500m)

               - HE: 15.6 kg, 900m/s

               - Vertical movement: -6/+15 degrees

  • Browning M2 heavy machine gun (turret roof)
  • M240 machine gun (coaxial)

 

Engine: 18L, 450 HP (340 kW) V8 petrol engine (Ford GAA derivative)

Power/weight: 10.7 kW/t tonne

Max speed (road): 45km/h

Max sustained speed (offroad): 30km/h

Range: 300km

 

81Aka7Z.jpg

Description

 

The M8A1 is an upgraded variant of the M8 medium design, incorporating a more powerful 100mm gun. This configuration sacrifices some mobility and crew comfort for hitting power, and is expected to allow the design to remain capable against all common armoured vehicles for the foreseeable future. The APDS round presently being developed for this gun, for instance, is expected to provide around 290mm of penetration at battle ranges. This, along with newer HEAT rounds and, eventually, APFSDS rounds, will also ensure that this design will remain competitive against MBT analogues if/when they emerge.

 

9W8PSA5.jpg

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Content

    • By kvnovasco
      ...actually nevermind i found this amazing site https://www.cybermodeler.com/armor/t-72/t-72_all.shtml  and it has LOADS of pics and i'm happy...still how do you find high res images of tanks online ?
      i looked and looked but rarely found any,it can't be possible that people didn't take millions of 6000x4000 pics of tanks...right?
    • By N-L-M
      Restricted: for Operating Thetan Eyes Only
      By order of Her Gracious and Serene Majesty Queen Diane Feinstein the VIII
      The Dianetic People’s Republic of California
      Anno Domini 2250
      SUBJ: RFP for new battle tank
       
      1.      Background.
      As part of the War of 2248 against the Perfidious Cascadians, great deficiencies were discovered in the Heavy tank DF-1. As detailed in report [REDACTED], the DF-1 was quite simply no match for the advanced weaponry developed in secret by the Cascadian entity. Likewise, the DF-1 has fared poorly in the fighting against the heretical Mormonhideen, who have developed many improvised weapons capable of defeating the armor on this vehicle, as detailed in report [REDACTED]. The Extended War on the Eastern Front has stalled for want of sufficient survivable firepower to push back the Mormon menace beyond the Colorado River south of the Vegas Crater.
      The design team responsible for the abject failure that was the DF-1 have been liquidated, which however has not solved the deficiencies of the existing vehicle in service. Therefore, a new vehicle is required, to meet the requirements of the People’s Auditory Forces to keep the dream of our lord and prophet alive.
       
       
      Over the past decade, the following threats have presented themselves:
      A.      The Cascadian M-2239 “Norman” MBT and M-8 light tank
      Despite being approximately the same size, these 2 vehicles seem to share no common components, not even the primary armament! Curiously, it appears that the lone 120mm SPG specimen recovered shares design features with the M-8, despite being made out of steel and not aluminum like the light tank. (based on captured specimens from the battle of Crater Lake, detailed in report [REDACTED]).
      Both tanks are armed with high velocity guns.
      B.      The Cascadian BGM-1A/1B/1C/1D ATGM
      Fitted on a limited number of tank destroyers, several attack helicopters, and (to an extent) man-portable, this missile system is the primary Cascadian anti-armor weapon other than their armored forces. Intelligence suggests that a SACLOS version (BGM-1C) is in LRIP, with rumors of a beam-riding version (BGM-1D) being developed.
      Both warheads penetrate approximately 6 cone diameters.
      C.      Deseret tandem ATR-4 series
      Inspired by the Soviet 60/105mm tandem warhead system from the late 80s, the Mormon nation has manufactured a family of 2”/4” tandem HEAT warheads, launched from expendable short-range tube launchers, dedicated AT RRs, and even used as the payload of the JS-1 MCLOS vehicle/man-portable ATGM.
      Both warheads penetrate approximately 5 cone diameters.
      D.      Cascadian HEDP 90mm rocket
      While not a particularly impressive AT weapon, being of only middling diameter and a single shaped charge, the sheer proliferation of this device has rendered it a major threat to tanks, as well as lighter vehicles. This weapon is available in large numbers in Cascadian infantry squads as “pocket artillery”, and there are reports of captured stocks being used by the Mormonhideen.
      Warhead penetrates approximately 4 cone diameters.
      E.      Deseret 40mm AC/ Cascadian 35mm AC
      These autocannon share broadly similar AP performance, and are considered a likely threat for the foreseeable future, on Deseret armored cars, Cascadian tank destroyers, and likely also future IFVs.
      F.      IEDs
      In light of the known resistance of tanks to standard 10kg anti-tank mines, both the Perfidious Cascadians and the Mormonhideen have taken to burying larger anti-tank A2AD weaponry. The Cascadians have doubled up some mines, and the Mormons have regularly buried AT mines 3, 4, and even 5 deep.
      2.      General guidelines:
      A.      Solicitation outline:
      In light of the differing requirements for the 2 theaters of war in which the new vehicle is expected to operate, proposals in the form of a field-replaceable A-kit/B-kit solution will be accepted.
      B.      Requirements definitions:
      The requirements in each field are given in 3 levels- Threshold, Objective, and Ideal.
      Threshold is the minimum requirement to be met; failure to reach this standard may greatly disadvantage any proposal.
      Objective is the threshold to be aspired to; it reflects the desires of the People’s Auditory Forces Armored Branch, which would prefer to see all of them met. At least 70% must be met, with bonus points for any more beyond that.
      Ideal specifications are the maximum of which the armored forces dare not even dream. Bonus points will be given to any design meeting or exceeding these specifications.
      C.      All proposals must accommodate the average 1.7m high Californian recruit.
      D.      The order of priorities for the DPRC is as follows:
      a.      Vehicle recoverability.
      b.      Continued fightability.
      c.       Crew survival.
      E.      Permissible weights:
      a.      No individual field-level removable or installable component may exceed 5 tons.
      b.      Despite the best efforts of the Agriculture Command, Californian recruits cannot be expected to lift weights in excess of 25 kg at any time.
      c.       Total vehicle weight must remain within MLC 120 all-up for transport.
      F.      Overall dimensions:
      a.      Length- essentially unrestricted.
      b.      Width- 4m transport width.
                                                                    i.     No more than 4 components requiring a crane may be removed to meet this requirement.
                                                                   ii.     Any removed components must be stowable on top of the vehicle.
      c.       Height- The vehicle must not exceed 3.5m in height overall.
      G.     Technology available:
      a.      Armor:
      The following armor materials are in full production and available for use. Use of a non-standard armor material requires permission from a SEA ORG judge.
      Structural materials:
                                                                    i.     RHA/CHA
      Basic steel armor, 250 BHN. The reference for all weapon penetration figures, good impact properties, fully weldable. Available in thicknesses up to 150mm (RHA) or 300mm (CHA).
      Density- 7.8 g/cm^3.
                                                                   ii.     Aluminum 5083
      More expensive to work with than RHA per weight, middling impact properties, low thermal limits. Excellent stiffness.
       Fully weldable. Available in thicknesses up to 100mm.
      Mass efficiency vs RHA of 1 vs CE, 0.9 vs KE.
      Thickness efficiency vs RHA of 0.33 vs CE, 0.3 vs KE.
      Density- 2.7 g/cm^3 (approx. 1/3 of steel).
      For structural integrity, the following guidelines are recommended:
      For light vehicles (less than 40 tons), not less than 25mm RHA/45mm Aluminum base structure
      For heavy vehicles (70 tons and above), not less than 45mm RHA/80mm Aluminum base structure.
      Intermediate values for intermediate vehicles may be chosen as seen fit.
      Non-structural passive materials:
                                                                  iii.     HHA
      Steel, approximately 500 BHN through-hardened. Approximately twice as effective as RHA against KE and HEAT on a per-weight basis. Not weldable, middling shock properties. Available in thicknesses up to 25mm.
      Density- 7.8g/cm^3.
                                                                  iv.     Glass textolite
      Mass efficiency vs RHA of 2.2 vs CE, 1.64 vs KE.
      Thickness efficiency vs RHA of 0.52 vs CE, 0.39 vs KE.
      Density- 1.85 g/cm^3 (approximately ¼ of steel).
      Non-structural.
                                                                   v.     Fused silica
      Mass efficiency vs RHA of 3.5 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 1 vs CE, 0.28 vs KE.
      Density-2.2g/cm^3 (approximately 1/3.5 of steel).
      Non-structural, requires confinement (being in a metal box) to work.
                                                                  vi.     Fuel
      Mass efficiency vs RHA of 1.3 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 0.14 vs CE, 0.1 vs KE.
      Density-0.82g/cm^3.
                                                                vii.     Assorted stowage/systems
      Mass efficiency vs RHA- 1 vs CE, 0.8 vs KE.
                                                               viii.     Spaced armor
      Requires a face of at least 25mm LOS vs CE, and at least 50mm LOS vs KE.
      Reduces penetration by a factor of 1.1 vs CE or 1.05 vs KE for every 10 cm air gap.
      Spaced armor rules only apply after any standoff surplus to the requirements of a reactive cassette.
      Reactive armor materials:
                                                                  ix.     ERA-light
      A sandwich of 3mm/3mm/3mm steel-explodium-steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                   x.     ERA-heavy
      A sandwich of 15mm steel/3mm explodium/9mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 3 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                  xi.     NERA-light
      A sandwich of 6mm steel/6mm rubber/ 6mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
                                                                 xii.     NERA-heavy
      A sandwich of 30mm steel/6m rubber/18mm steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
      The details of how to calculate armor effectiveness will be detailed in Appendix 1.
      b.      Firepower
                                                                    i.     2A46 equivalent tech- pressure limits, semi-combustible cases, recoil mechanisms and so on are at an equivalent level to that of the USSR in the year 1960.
                                                                   ii.     Limited APFSDS (L:D 15:1)- Spindle sabots or bourelleted sabots, see for example the Soviet BM-20 100mm APFSDS.
                                                                  iii.     Limited tungsten (no more than 100g per shot)
                                                                  iv.     Californian shaped charge technology- 5 CD penetration for high-pressure resistant HEAT, 6 CD for low pressure/ precision formed HEAT.
                                                                   v.     The general issue GPMG for the People’s Auditory Forces is the PKM. The standard HMG is the DShK.
      c.       Mobility
                                                                    i.     Engines tech level:
      1.      MB 838 (830 HP)
      2.      AVDS-1790-5A (908 HP)
      3.      Kharkov 5TD (600 HP)
                                                                   ii.     Power density should be based on the above engines. Dimensions are available online, pay attention to cooling of 1 and 3 (water cooled).
                                                                  iii.     Power output broadly scales with volume, as does weight. Trying to extract more power from the same size may come at the cost of reliability (and in the case of the 5TD, it isn’t all that reliable in the first place).
                                                                  iv.     There is nothing inherently wrong with opposed piston or 2-stroke engines if done right.
      d.      Electronics
                                                                    i.     LRFs- unavailable
                                                                   ii.     Thermals-unavailable
                                                                  iii.     I^2- limited
      3.      Operational Requirements.
      The requirements are detailed in the appended spreadsheet.
      4.      Submission protocols.
      Submission protocols and methods will be established in a follow-on post, nearer to the relevant time.
       
      Appendix 1- armor calculation
      Appendix 2- operational requirements
      Addendum 1 - more armor details
      Good luck, and may Hubbard guide your way to enlightenment!
    • By Sturgeon
      @Toxn
      @Dominus Dolorem
      @Lord_James
      @A. T. Mahan
      @delete013
      @Sten
      @Xoon
      @Curly_
      @N-L-M
      @Sturgeon
       
      detailed below is the expected format of the final submission.
      The date is set as Saturday the 24th of July at 23:59 CST.
      Again, incomplete designs may be submitted as they are and will be judged as seen fit.

      PLEASE REMEMBER ALL ENTRIES MUST BE SUBMITTED IN USC ONLY
       
       
      FINAL SUBMISSION:
      Vehicle Designation and name
       
      [insert 3-projection (front, top, side) and isometric render of vehicle here]
       
      Table of basic statistics:
      Parameter
      Value
      Mass, combat (armor)
       
      Length, combat (transport)
       
      Width, combat (transport)
       
      Height, combat (transport)
       
      Ground Pressure, zero penetration
       
      Estimated Speed
       
      Estimated range
       
      Crew, number (roles)
       
      Main armament, caliber (ammo count ready/stowed)
       
      Secondary armament, caliber (ammo count ready/stowed)
       
       
      Vehicle designer’s notes: explain the thought process behind the design of the vehicle, ideas, and the development process from the designer’s point of view.
      Vehicle feature list:
      Mobility:
      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.
      2.     Engine- type, displacement, rated power, cooling, neat features.
      3.     Transmission - type, arrangement, neat features.
      4.     Fuel - Type, volume available, stowage location, estimated range, neat features.
      5.     Other neat features in the engine bay.
      6.     Suspension - Type, Travel, ground clearance, neat features.
      Survivability:
      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.
      2.     Link to Appendix 2 - armor array details.
      3.     Non-specified survivability features and other neat tricks - low profile, gun depression, instant smoke, cunning internal arrangement, and the like.
      Firepower:
      A.    Weapons:
      1.     Link to Appendix 1 - RFP spreadsheet, colored to reflect achieved performance.
      2.     Main Weapon-
      a.      Type
      b.      Caliber
      c.      ammunition types and performance (short)
      d.     Ammo stowage arrangement- numbers ready and total, features.
      e.      FCS - relevant systems, relevant sights for operating the weapon and so on.
      f.      Neat features.
      3.     Secondary weapon - Similar format to primary. Tertiary and further weapons- likewise.
      4.     Link to Appendix 3 - Weapon system magic. This is where you explain how all the special tricks related to the armament that aren’t obviously available using 1960s tech work, and expand to your heart’s content on estimated performance and how these estimates were reached.
      B.    Optics:
      1.     Primary gunsight - type, associated trickery.
      2.     Likewise for any and all other optics systems installed, in no particular order.
      C.    FCS:
      1.     List of component systems, their purpose and the basic system architecture.
      2.     Link to Appendix 3 - weapon system magic, if you have long explanations about the workings of the system.
      Fightability:
      1.     List vehicle features which improve its fightability and useability.
      Additonal Features:
      Feel free to list more features as you see fit, in more categories.
      Free expression zone: Let out a big yeehaw to impress the world with your design swagger! Kindly spoiler this section if it’s very long.
       
       Example for filling in Appendix 1
       Example for filling in Appendix 2
       Example for filling in Appendix 3

      GOOD LUCK!
    • By Sturgeon
      The LORD was with the men of Deseret. They took possession of the hill country, but they were unable to drive the people from the plains, because they had chariots of steel.
      —The Book of Latter Day Saints, Ch 8, vs. 3:10, circa 25th Century CE
       
      BULLETIN: ALL INDUSTRIAL-MECHANICAL CONCERNS
       
      SOLICITATION FOR ALL-TERRAIN BATTLE TANK
       
      The Provisional Government of the Lone Free State of Texas and The Great Plains issues the following solicitation for a new All-Terrain Battle Tank. The vehicle will be the main line ground combat asset of the Lone Free State Rangers, and the Texas Free State Patrol, and will replace the ageing G-12 Scout Truck, and fill the role of the cancelled G-42 Scout Truck. The All-Terrain Battle Tank (ATBT) will be required to counter the new Californian and Cascadian vehicles and weapons which our intelligence indicates are being used in the western coast of the continent. Please see the attached sheet for a full list of solicitation requirements.
       

       
      Submissions will be accepted in USC only.
       
       
      Supplementary Out of Canon Information:
       
       
      I.     Technology available:
      a.      Armor:
      The following armor materials are in full production and available for use. Use of a non-standard armor material requires permission from a judge.
      Structural materials:
                                                                    i.     RHA/CHA
      Basic steel armor, 360 BHN. The reference for all weapon penetration figures, good impact properties, fully weldable. Available in thicknesses up to 4 inches (RHA) 8 inches (CHA). 
      Density- 0.28 lb/in^3.
                                                                   ii.     Aluminum 5083
      More expensive to work with than RHA per weight, middling impact properties, low thermal limits. Excellent stiffness.
       Fully weldable. Available in thicknesses up to 4 inches.
      Mass efficiency vs RHA of 1 vs CE, 0.9 vs KE.
      Thickness efficiency vs RHA of 0.33 vs CE, 0.3 vs KE.
      Density- 0.1 lb/in^3 (approx. 1/3 of steel).
      For structural integrity, the following guidelines are recommended:
      For heavy vehicles (30-40 tons), not less than 1 in RHA/1.75 in Aluminum base structure
      For medium-light vehicles (<25 tons), not less than 0.5 in RHA/1 in Aluminum base structure
      Intermediate values for intermediate vehicles may be chosen as seen fit.
      Non-structural passive materials:
                                                                  iii.     HHA
      Steel, approximately 500 BHN through-hardened. Approximately 1.5x as effective as RHA against KE and HEAT on a per-weight basis. Not weldable, middling shock properties. Available in thicknesses up to 1 inch.
      Density- 0.28 lb/in^3
                                                                  iv.     Fuel
      Mass efficiency vs RHA of 1.3 vs CE, 1 vs KE.
      Thickness efficiency vs RHA of 0.14 vs CE, 0.1 vs KE.
      Density-0.03 lb/in^3.
                                                                v.     Assorted stowage/systems
      Mass efficiency vs RHA- 1 vs CE, 0.8 vs KE.
                                                               vi.     Spaced armor
      Requires a face of at least 1 inch LOS vs CE, and at least 0.75 caliber LOS vs fullbore AP KE.
      Reduces penetration by a factor of 1.1 vs CE or 1.05 vs KE for every 4 inchair gap.
      Spaced armor rules only apply after any standoff surplus to the requirements of a reactive cassette.
      Reactive armor materials:
                                                                  vii.     ERA
      A sandwich of 0.125in/0.125in/0.125in steel-explodium-steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 2 sandwich thicknesses away from any other armor elements to allow full functionality. 81% coverage (edge effects).
                                                                  viii.     NERA
      A sandwich of 0.25in steel/0.25in rubber/0.25in steel.
      Requires mounting brackets of approximately 10-30% cassette weight.
      Must be spaced at least 1 sandwich thickness away from any other armor elements to allow full functionality. 95% coverage.
      The details of how to calculate armor effectiveness will be detailed in Appendix 1.
      b.      Firepower
                                                                    i.     Bofors 57mm (reference weapon) - 85,000 PSI PMax/70,000 PSI Peak Operating Pressure, high quality steel cases, recoil mechanisms and so on are at an equivalent level to that of the USA in the year 1960.
                                                                   ii.     No APFSDS currently in use, experimental weapons only - Spindle sabots or bourelleted sabots, see for example the Soviet BM-20 100mm APFSDS.
                                                                  iii.     Tungsten is available for tooling but not formable into long rod penetrators. It is available for penetrators up to 6 calibers L:D.
                                                                  iv.     Texan shaped charge technology - 4 CD penetration for high-pressure resistant HEAT, 5 CD for low pressure/ precision formed HEAT.
                                                                   v.     The subsidy-approved GPMG for the Lone Free State of Texas has the same form factor as the M240, but with switchable feed direction.. The standard HMG has the same form factor as the Kord, but with switchable feed direction.
      c.       Mobility
                                                                    i.     Engines tech level:
      1.      MB 838 (830 HP)
      2.      AVDS-1790-5A (908 HP)
      3.      Kharkov 5TD (600 HP)
      4.    Detroit Diesel 8V92 (400 HP)
      5.    Detroit Diesel 6V53 (200 HP)
                                                                   ii.     Power density should be based on the above engines. Dimensions are available online, pay attention to cooling of 1 and 3 (water cooled).
                                                                  iii.     Power output broadly scales with volume, as does weight. Trying to extract more power from the same size may come at the cost of reliability (and in the case of the 5TD, it isn’t all that reliable in the first place).
                                                                  iv.     There is nothing inherently wrong with opposed piston or 2-stroke engines if done right.
      d.      Electronics
                                                                    i.     LRFs- unavailable
                                                                   ii.     Thermals-unavailable
                                                                  iii.     I^2- Gen 2 maximum
                                                                  vi.     Texas cannot mass produce microprocessors or integrated circuits
                                                                 vii.    Really early transistors only (e.g., transistor radio)
                                                                viii.    While it is known states exist with more advanced computer technology, the import of such systems are barred by the east coast states who do not approve of their use by militaristic entities.
       
      Armor calculation appendix.
       
      SHEET 1 Armor defeat calculator 4in-54 1200 yd
       
      SHEET 2 Armor defeat calculator 4in-54 2000 yd
       
      SHEET 3 Armor defeat calculator 6in HEAT
       
      Range calculator
       
×
×
  • Create New...